首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Micro via and line patterning for PCB using imprint technique   总被引:1,自引:0,他引:1  
Today’s electronic devices such as mobile phones, PDA, computers, etc. have more functions in a smaller size. Thus conducting lines and via holes of PCB (printed circuit board) which has a role of land for all kinds of electronic components are getting finer. In this study, the conducting lines and via holes are produced using thermal imprint technique rather than the conventional photo-lithography process. Imprint technique is a press process that transfers patterns of stamp to resins. Imprint technique is used to produce micro size trench lines and via holes in epoxy resins.Resins used in this work are silica (SiO2) reinforced epoxy. Resins were imprinted using 10 * 10 mm size Ni or polymer stamp. Line/space of pattern is 10/10 μm while diameter of via hole is 30 μm. The depths of lines and via holes are 15 and 30 μm, respectively. The anti-sticking treated stamp and epoxy resins were pressed at 100 °C for 30 min in vacuum. The stamp was released after resins were cured for 1 h at 130 °C. All patterns of stamp were successfully transferred with high fidelity and any noticeable defect was not observed within imprinted area. Imprinted resins were de-smeared to remove the residue at the bottom of via holes and to enhance the adhesion of resins with Cu. Electro/less copper plating was followed to fill in the imprinted patterns. Since the excess Cu layer was formed on the resins during Cu plating, the planarization process was introduced to obtain isolated lines and via holes.  相似文献   

2.
3.
Individual pillars were etched from a sample embedding a single plane of GaN/AlN quantum dots, deposited by molecular beam epitaxy on a sapphire substrate. Pillars with diameters ranging from 0.1 to 5 μm were fabricated by electron-beam lithography and SiCl4 reactive ion etching. The PL from a single pillar could be measured by using a confocal microscope, with a spatial resolution of 600 nm. We report an intense PL signal from pillar diameters as small as 0.1 μm at room temperature. By increasing the power of the excitation laser from 0.05 to 200 μW, we induced a blue-shift of the PL energy peak from 2.38 to 2.86 eV, accompanied by a substantial broadening of the PL line. This is explained by the photo-induced screening of the internal electric field, which is close to 10 MV/cm in GaN/AlN heterostructures. Finally we report and tentatively explain a photodarkening effect, i.e., the progressive decrease of the PL intensity over two orders of magnitude, after one hour of continuous laser excitation. However, this effect does not seem to be correlated to the etching process.  相似文献   

4.
We present a method to produce superhydrophobic surfaces in thermoplastic polymer substrates. The method involves the creation of a nickel stamp using a customized laser interference lithography technique and electroplating processes. This stamp is used to emboss sub-micrometer periodic structures into the thermoplastic. The modified surface is coated with a hydrophobic plasma-polymerized hexafluoropropene layer. Surfaces with different periodicity and relief depth were created. On the surface with the highest aspect ratio, advancing water contact angles of 167° were measured with a water contact angle hysteresis of below 5°.  相似文献   

5.
Nanoimprint lithography (NIL) is the cutting-edge technology to produce sub-100 nm scale features on substrates. The fundamental procedure of nanoimprint lithography is replicating the patterns defined in the stamp to any deformable materials such as photoresist spun on substrates by pressing and the physical shape of the resist is deformed during the imprinting process. In this study, for the single-step nanoimprinting process, the 4-in. imprinting head, the fabricated 4-in. mask, the alignment system for multi-layer processes, and the six-DOF compliant mechanism of a wafer stage for single-step nanoimprinting on a 4-in. wafer are proposed. Using the designed nanoimprinting equipment, the nanoscale patterns with 100 nm linewidth and 150 nm height were clearly patterned on the substrate. Finally, the nanoimprinting results show the validity of the developed equipment.  相似文献   

6.
Fibroblasts alter their shape, direction of movement, cytoskeleton arrangement, and focal contact when placed upon square array pillars. We prepared pillars of 1 μm diameter, separated by 3 μm, and having 1, 5, and 10 μm heights using substrates displaying identical surface chemistry. When cells seeded initially onto the tops of the pillars, fibroblasts subsequently were immobilized in situ by several pillars that visibly protruded through, but did not pierce, the cell bodies. The cytoplasma then migrated outward with long straight lamella along the interval of the pillars and formed several discrete attachment zones at their side walls – the value of their form index (FI) was as high as 35 – which altered the cellular shape entirely. Most of the cells interacted with the pillar substrate by spreading preferentially in a particular direction, but some of them had the ability to undergo coincident two-direction (x and y) migration; right-angle turn orientations led to the growth of dramatic cellular morphologies. Interestingly, this fibroblast's behavior variation was gradually in proportion to the pillar height of substrate. Our results confirm that cellular migration and cellular shape are both strongly affected by the geometry of the growth microenvironment.  相似文献   

7.
集成紫外固化胶NOA73微球与SU-8微柱制造的亚毫米探针,可以作为关键部件应用于三坐标测量机。NOA73微球通过NOA73对其他溶液的界面张力形成,柱子由深紫外光穿过微球曝光SU-8形成。这种新技术利用甘油补偿NOA73与空气折射率差,使得紫外光透过NOA73微球后保持接近平行。最终得到高深宽比的探针结构,高度超过1 200 m,微柱侧壁与基底呈89。  相似文献   

8.
Two-dimensional (2D) pillar arrays with submicrometer to micrometer repetitions have been fabricated from hybrid organic–inorganic material by mask lithography or multi-beam interference lithography. The type of array structure depends on structural parameters such as the pillar height, diameter and distance between neighboring pillars. Two kinds of periodic arrays, 2D arrays and ‘top-gathering’ arrays, can be obtained by controlling the structural parameters. In the top-gathering arrays, the pillars are gathered at the top by means of self-organization, and ‘top-gathering’ units composed of four pillars can be formed. PACS 68.35.Gy; 81.20.Fw; 82.50.-m  相似文献   

9.
A simple and self-catalytic method has been developed for synthesizing finely patterned ZnO nanorods on ITO-glass substrates under a low temperature of 500 °C. The patterned ZnO nanorod arrays, a unit area is of 400 × 100 μm2, are synthesized via vapor phase transport method. The surface morphology and composition of the as-synthesized ZnO nanorods are characterized by means of scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The mechanism of formation of ZnO nanorods is also discussed. The measurement of field emission (FE) reveals that the as-synthesized ZnO nanorods arrays have a turn-on field of 3.3 V/μm at the current density of 0.1 μA/cm2 and a low threshold field of 6.2 V/μm at the current density of 1 mA/cm2. So this approach must have a potential application of fabricating micropatterned oxide thin films used in FE-based flat panel displays.  相似文献   

10.
Ag ink was spontaneously patterned on glass substrate by using the surface energy difference of a pre-patterned octadecyltrichlorosilane (OTS) layer. Ag ink was confined into the hydrophilic area, where OTS layer was not formed. OTS layer was selectively transferred by micro-contact printing (μCP) method and significantly decreased surface energy. As a result, surface of glass substrate was separated as hydrophobic and hydrophilic with and without OTS layer, respectively. Ag line could be successfully patterned with the width of below 10 μm on the glass. The patterned Ag line was dense and abrupt on the edge and the thickness was about 0.25 μm. Ag film showed good adhesion on a glass substrate after anneal above 200 °C. The minimum resistivity was about 4 μΩ cm.  相似文献   

11.
Highly ordered TiO2/Ti nanotube arrays were fabricated by anodic oxidation method in 0.5 wt% HF. Using prepared TiO2/Ti nanotube arrays deposited Ni nanoparticles as substrate, high quality diamond-like carbon nanorods (DLCNRs) were synthesized by a conventional method of chemical vapor deposition at 750 °C in nitrogen atmosphere. DLCNRs were analyzed by filed emission scanning electron microscopy and Raman spectrometer. It is very interesting that DLCNRs possess pagoda shape with the length of 3–10 μm. Raman spectra show two strong peaks about 1332 cm−1 and 1598 cm−1, indicating the formation of diamond-like carbon. The field emission measurements suggest that DLCNRs/TiO2/Ti has excellent field emission properties, a low turn-on field about 3.0 V/μm, no evident decay at 3.4 mA/cm2 in 480 min.  相似文献   

12.
In dual band thermal imager dichroic coating plays a vital role in separating 3–5 μm and 7.5–10.5 μm wavelength region for observing better image quality from two different channels. In this work a study has been carried out on the design and fabrication of short and long wave pass dichroic coating at 45° on zinc selenide flat substrate. These dichroic coated optics can be used to separate 3–5 μm (in reflection or transmission channel) and 7.5–10.5 μm (in transmission or reflection channel) wavelength region. An inhomogeneous refractive index profile which is a polynomial of 5th order was considered to design the high and low wave pass dichroic coating on zinc selenide substrate. The inhomogeneous profile was then approximated with five steps from substrate to air medium. These steps were then converted in terms of durable coating materials of six and seven layer stack for short and long wave pass dichroic coating respectively. The coating material combination used was germanium as high index material and IR-F625 as low index material. Result achieved for short wave pass dichroic filter was 94% average transmission in 3–5 μm region and 95% average reflection in 7.5–10.5 μm region. Similarly, result achieved for long wave pass dichroic filter was 95% average reflection in 3–5 μm region and 94% average transmission in 7.5–10.5 μm.  相似文献   

13.
Swati Rawal  R.K. Sinha   《Optics Communications》2009,282(19):3889-3894
A highly efficient photonic crystal dual band wavelength demultiplexer (DBWD) using silicon-on-insulator (SOI) substrates is proposed for demultiplexing two optical communication wavelengths, 1.31 μm and 1.55 μm. Demultiplexing of two wavelength channels is obtained by modifying the propagation properties of guided modes in two arms of Y type photonic crystal structure. Propagation characteristics of proposed DBWD are analyzed utilizing 3D finite difference time domain (FDTD) method. Enhancement in spectral response is further obtained by optimizing the Y junction of demultiplexer giving rise to high transmission and extinction ratio for the wavelengths, 1.31 μm and 1.55 μm. Hence it validates the efficiency of proposed optimized DBWD design for separating two optical communication wavelengths, 1.31 μm and 1.55 μm. Tolerance analysis was also performed to check the effect of variation of air hole radius, etch depth and refractive index on the transmission characteristics of the proposed design of SOI based photonic crystal DBWD.  相似文献   

14.
Efficient silicon-based light emitting diodes have been fabricated using the dislocation engineering method. Crucially this technique uses entirely conventional ULSI processes. The devices were fabricated by conventional low-energy boron implantation into silicon substrates followed by high-temperature annealing, and strong silicon band edge luminescence was observed. Dislocation engineering is also shown to reduce the thermal quenching for other material systems. Dislocation engineered β-FeSi2 and Er light emitting devices were fabricated and room temperature electroluminescence at 1.5 μm was observed in both cases.  相似文献   

15.
In thermal nanoimprint lithography, temperature is one of the most important process parameters. Temperature is not only important for the flow of resist during molding but also for demolding, the process by which the imprint stamp is removed from the molded resist/substrate. This is because thermal stress and friction and adhesion forces generated at the stamp/resist interface and the mechanical strength of the resist are all dependent on temperature. In this paper, we demonstrate via both experimentation and numerical simulation that an optimal temperature (T d) leading to minimal deformation of molded resist exists for demolding. The ease of demolding was directly accessed by measuring demolding force at different T d for a Si stamp/PMMA/Si substrate system of 4-in.-diameter using a mechanical tester. Numerically, the demolding process for a simple two-dimensional model of a Si stamp/poly(methyl methacrylate) (PMMA) resist/Si substrate system was simulated using a finite-element method for different T d, assuming viscoelasticity of the PMMA resist and temperature dependence of friction coefficients at the stamp/PMMA interface. We found that a temperature leading to the minimum in both the demolding force and the normalized stress vs. T d curves exists below the glass transition temperature of the PMMA resist, from which the optimal T d was derived.  相似文献   

16.
Silicon micro-nano pillars are cost-efficiently integrated using twice cesium chloride (CsCl) islands lithography technique and dry etching for solar cell applications. The micro PMMA islands are fabricated by inductively coupled plasma (ICP) dry etching with micro CsCl islands as masks, and the nano CsCl islands with nano sizes then are made on the surface of micro PMMA islands and silicon. By ICP dry etching with the mask of micro PMMA islands and nano CsCl islands, the micro-nano silicon pillars are made and certain height micro pillars are randomly positioned between dense arrays of nano pillars with different morphologies by controlling etching conditions. With 300 nm depth p-n junction detected by secondary-ion mass spectrometry (SIMS), the micro pillars of the diameter about 1 μm form the core–shell p-n junction to maximize utility of p-n junction interface and enable efficient free carrier collection, and the nano tapered pillars of 150 nm diameter are used to decrease reflection by a graded-refractive-index. Compared to single micro or nano pillar arrayed cells, the co-integrated solar cell with micro and nano pillars demonstrates improved photovoltaic characteristic that is a photovoltaic conversion efficiency (PCE) of 15.35 % with a short circuit current density (J sc) of 38.40 mA/cm2 and an open circuit voltage (V oc) of 555.7 mV, which benefits from the advantages of micro-nano pillar structures and can be further improved upon process optimization.  相似文献   

17.
Microlens arrays fabricated by melting photoresist were transferred by reactive ion etching (RIE) into glass (SiO2) and silicon (Si). By controlling the etching rates of the mask and the substrate material, radii of curvature and focal lengths within a wide range can be achieved. For example, glass lenses with diameter 120 μm and focal lengths between 500 μm and 1500 μm were made. The scaling possibilities of microlens arrays, given the use of RIE, are discussed.  相似文献   

18.
以微米级的聚苯乙烯微球当作真实大分子链的结构单元,用软刻蚀的毛细微模塑法在玻璃基片上把它们组装成单链形状的微球串,加热使微球相互连接,从而为“亚观”尺度上模拟“大分子”链(刚性链)提供简单又直观的“模型”.并把基片上的模型链剥离下来,处于自由态.  相似文献   

19.
We present a microfluidic system with paraffin-actuated microvalves and a thermopneumatic-actuated micropump that are easily integrated on the same substrate using the same fabrication process. The fabrication process of this microfluidic system using polydimethylsiloxane (PDMS), indium tin oxide (ITO) and glass is relatively simple, and its performance is good for the application of the disposable lab-on-a-chip. A maximum pumping rate of about 2.0 μl/min was measured at a duty ratio of 5% and a frequency of 1 Hz. The flow cut-off powers for the microvalves with the channel depth of 220 μm, were 300 and 350 mW for valve seat diameters of 1.5 and 2.0 mm, respectively. The power for flow cut-off depends on the channel depth and the diameter of the valve seat in the microvalves.  相似文献   

20.
S.A. Comastri  G. Martin  T. Pfortner 《Optik》2006,117(11):537-545
Ocular aberrations depend on pupil size and centring and the retinal image quality under natural conditions differs from that corresponding to laboratory ones. In the present article, pupil and wave aberration data supplied by the Shin Nippon CT 1000 (SN CT 1000) topography system are analysed. Two groups of eyes under natural viewing conditions are considered ((260±20) lux at the eye under study). The first group consists of 10 normal eyes (−1.25 to 3 D sphere; 0 to −1.75 D cylinder) of five young subjects (age between 18 and 33 years). For this group, five determinations per eye are performed and the repeatability of results is analysed. Pupil centre is displaced from corneal vertex towards the temporal region, the largest displacement being (0.5±0.1) mm. The variation of pupil diameter in each eye is less than 21% while the inter-subject variability is large since diameters are between (3±0.3) and (5.3±0.6) mm. Aberrations are evaluated for two different pupil sizes, the natural one and a fictitious one of 6 mm. The corneal higher-order root-mean square wavefront error (RMSHO) for a 6 mm pupil centred in the corneal vertex, averaged across all eyes, is (0.37±0.06) μm while, considering the natural pupil diameter, the average in each eye is significantly lower, up to eight times smaller. The fourth-order spherical aberration is an important aberration in the considered eyes, its maximum value for a 6 mm pupil being (0.38±0.02) μm. The second group consists of 24 eyes of 12 subjects (age between 25 and 68 years) such that four eyes are of normal adults (1.25 to +6 D sphere; 0 to −0.5 D cylinder), eight have astigmatisms (−5.5 to +3.25 D sphere; −1.5 to −4.5 D cylinder), six have post-refractive surgery (+0.5 to +3.5 D sphere; −0.5 to −4 D cylinder) and six have keratoconus (−9.5 to +1 D sphere; −1 to −4.5 D cylinder). For this group only one determination per eye is performed. Pupil centre is displaced from corneal vertex towards the temporal region except in cases of keratoconus, where there can be a dominant upwards displacement. Pupil diameters are between 2.7 and 5.6 mm. The corneal higher order root mean square wavefront error for a 6 mm pupil ranges between 0.3 (normal eye) and 5.3 μm (keratoconus).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号