首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two new N-acylsphingosines (ceramides) named longifoamide A {6'-tetracosenamide, (6'-Z)-N-[2,3-dihydroxy-1-(hydroxymethyl)octadecyl]} and B {6'-tetracosenamide, (6'-Z)-N-[2,3,4-trihydroxy-1-(hydroxymethyl)octadecyl]} were isolated from a methanol extract of Mentha longifolia. Both ceramides were characterized with the aid of 1D and 2DNMR spectroscopic techniques and high resolution mass spectrometry.  相似文献   

2.
A new series of silver complexes, [AgL], of the anionic forms of potentially bidentate N-2-pyridyl sulfonamide ligands [N-(3-methyl-2-pyridyl)-p-toluenenesulfonamide (HTs3mepy), N-(3-methyl-2-pyridyl)mesitylenesulfonamide (HMs3mepy), N-(4-methyl-2-pyridyl)-p-toluenesulfonamide (HTs4mepy), and N-(6-methyl-2-pyridyl)mesitylenesulfonamide (HMs6mepy)] have been prepared by an electrochemical procedure. In addition, heteroleptic complexes of composition [AgLL'] (L' = 1,10-phenanthroline and 2,2'-bipyridine) were obtained when the coligand L' was added to the electrolytic phase. The complexes were characterized by microanalysis, IR and (1)H NMR spectroscopy, and LSI mass spectrometry. In the cases of the compounds [Ag(Ts3mepy)](n)() (1), [Ag(4)(Ms3mepy)(4)] (2a), [Ag(Ms3mepy)](n)() (2b), [Ag(4)(Ms6mepy)(4)] (3a), [Ag(2)(Ms6mepy)(2)](n)() (3b), [Ag(2)(Ms3mepy)(2)(phen)(2)] (5), [Ag(2)(Ms6mepy)(2)phen] (7), and [Ag(2)(Ts4mepy)(2)(bipy)(2)] (8), characterization was also carried out by single-crystal X-ray diffraction. Compounds 1 and 2b present a polymer structure formed by an {AgN(2)} digonal core. Compounds 2a and 3a are tetranuclear and also have a distorted {AgN(2)} digonal core. Compound 3b is based on binuclear distorted {AgN(2)} digonal units joined by an intermolecular sulfonyl oxygen atom to produce a stairlike polymer structure. The heteroleptic complexes 5 and 8 are dimeric with a distorted {AgN(4)} tetrahedral geometry, while compound 7 shows two different geometries around the metal, distorted {AgN(2)} digonal and {AgN(4)} tetrahedral. The supramolecular structures of all species are organized by pi,pi-stacking, C-H...pi, or C-H...O interactions.  相似文献   

3.
Thymidine and uridine were modified at the C2' and C5' ribose positions to form amine analogues of the nucleosides (1 and 4). Direct amination with NaBH(OAc)3 in DCE with the appropriate aldehydes yielded 1-{5-[(bis(pyridin-2-ylmethyl)amino)methyl]-4-hydroxytetrahydrofuran-2-yl}-5-methyl-1H-pyrimidine-2,4-dione (L1), 1-{5-[(bis(quinolin-2-ylmethyl)amino)methyl]-4-hydroxytetrahydrofuran-2-yl}-5-methyl-1H-pyrimidine-2,4-dione (L2), and 1-[3-(bis(pyridin-2-ylmethyl)amino)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl]-1H-pyrimidine-2,4-dione (L5), while standard coupling procedures of 1 and 4 with 5-(bis(pyridin-2-ylmethyl)amino)pentanoic acid (2) and 5-(bis(quinolin-2-ylmethyl)amino)pentanoic acid (3) in the presence of HOBT-EDCI in DMF provided a second novel series of bifunctional chelators: 5-(bis(pyridin-2-ylmethyl)amino)pentanoic acid [(3-hydroxy-5-(5-methyl-4-oxo-3,4-dihydro-2H-pyrimidin-1-yl)tetrahydrofuran-2-yl)methyl] amide (L3), 5-(bis(quinolin-2-ylmethyl)amino)pentanoic acid [(3-hydroxy-5-(5-methyl-4-oxo-3,4-dihydro-2H-pyrimidin-1-yl)tetrahydrofuran-2-yl)methyl] amide (L4), 5-(bis(pyridin-2-ylmethyl)amino)pentanoic acid [2-(2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-3-yl] amide (L6), and 5-(bis(quinolin-2-ylmethyl)amino)pentanoic acid [2-(2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-3-yl] amide (L7). The rhenium tricarbonyl complexes of L1-L4, L6, and L7, [Re(CO)3(LX)]Br (X=1-4, 6, 7: compounds 5-10, respectively), have been prepared by reacting the appropriate ligand with [NEt4][Re(CO)3Br3] in methanol. The ligands and their rhenium complexes were obtained in good yields and characterized by common spectroscopic techniques including 1D and 2D NMR, HRMS, IR, cyclic voltammetry, UV, and luminescence spectroscopy and X-ray crystallography. The crystal structure of complex 6.0.5NaPF6 displays a facial geometry of the carbonyl ligands. The nitrogen donors of the tridentate ligand complete the distorted octahedral spheres of the complex. Crystal data: monoclinic, C2, a = 24.618(3) A, b = 11.4787(11) A, c = 15.5902(15) A, beta = 112.422(4) degrees , Z = 4, D(calc) = 1.562 g/cm3.  相似文献   

4.
The transformation of 2-chloro-3-[5-(acetoxymethyl)-1-phenylpyrazol-3-yl]quinoxaline 3 to 1-aryl-4-[5-(hydroxymethyl-1-phenylpyrazol-3-yl][1,2,4]triazolo[4,3-a]quinoxalines 4a-c has been achieved upon treatment with aroylhydrazines in boiling butanol. Compounds 4a-c were smoothly acetylated by acetic anhydride to give their acetyl derivatives 5a-c in good yield. 4-[5-(Acetoxymethyl)-1-phenylpyrazol-3-yl]-1-methyl[1,2,4]triazolo[4,3-a]quinoxaline was prepared by ring closure of 2-hydrazino-3-[5-(hydroxymethyl)-1-phenylpyrazol-3-yl]quinoxaline 6 by the action of acetic anhydride. The reaction of 6 with acetylacetone afforded 3-[5-(hydroxymethyl)-1-phenylpyrazol-3-yl]-2-(3,5-dimethylpyrazol-1-yl)quinoxaline 8 . In addition, the reaction of 3 with sodium azide in boiling N, N-dimethylformamide yielded the fused tetrazolo[1,5-a]quinoxaline 9 .  相似文献   

5.
The synthesis of N,N'-bis[6-(2-hydroxy-2-phenylethylamino)hexyl] cystamines 4 , and N-(2-hydroxy-2-phenylethyl)-1,6-hexanediamines 6 are described. Compounds 4 were obtained by condensation of the requisite epoxide 2 with 3-(6-aminohexyl)-1,3-thiazolidine followed by dimerization with opening of the thiazolidine ring. A similar method was used for the preparation of compounds 6. In order to prepare 4j (N,N'-bis{6-[2-hydroxy-2(3,4-dihydroxyphenyl)ethylamino]hexyl}cystamine), several procedures were tested; the method of choice involved the use of 3,4-dihydroxybenzaldehyde with both hydroxy groups protected as methoxymethyl ethers.  相似文献   

6.
The synthesis, structures, and magnetic properties of six families of cobalt-lanthanide mixed-metal phosphonate complexes are reported in this Article. These six families can be divided into two structural types: grids, where the metal centers lie in a single plane, and cages. The grids include [4 × 3] {Co(8)Ln(4)}, [3 × 3] {Co(4)Ln(6)}, and [2 × 2] {Co(4)Ln(2)} families and a [4 × 4] {Co(8)Ln(8)} family where the central 2 × 2 square is rotated with respect to the external square. The cages include {Co(6)Ln(8)} and {Co(8)Ln(2)} families. Magnetic studies have been performed for these compounds, and for each family, the maximum magnetocaloric effect (MCE) has been observed for the Ln = Gd derivative, with a smaller MCE for the compounds containing magnetically anisotropic 4f-ions. The resulting entropy changes of the gadolinium derivatives are (for 3 K and 7 T) 11.8 J kg(-1) K(-1) for {Co(8)Gd(2)}; 20.0 J kg(-1) K(-1) for {Co(4)Gd(2)}; 21.1 J kg(-1) K(-1) for {Co(8)Gd(4)}; 21.4 J kg(-1) K(-1) for {Co(8)Gd(8)}; 23.6 J kg(-1) K(-1) for {Co(4)Gd(6)}; and 28.6 J kg(-1) K(-1) for {Co(6)Gd(8)}, from which we can see these values are proportional to the percentage of the gadolinium in the core.  相似文献   

7.
The compound [1-SMe2-2,2-(CO)2-7,11-(mu-H)2-2,7,11-{Ru2(CO)6}-closo-2,1-RuCB10H8] 1a reacts with PMe3 or PCy3(Cy = cyclo-C6H11) to give the structurally different species [1-SMe2-2,2-(CO)2-7,11-(mu-H)2-2,7,11-{Ru2(CO)5(PMe3)}-closo-2,1-RuCB10H8] 4 and [1-SMe2-2,2-(CO)2-11-(mu-H)-2,7,11-{Ru2(mu-H)(CO)5(PCy3)}-closo-2,1-RuCB10H8]5, respectively. A symmetrically disubstituted product [1-SMe2-2,2-(CO)2-7,11-(mu-H)2-2,7,11-{Ru2(CO)4(PMe3)2}-closo-2,1-RuCB10H8] 6 is obtained using an excess of PMe3. In contrast, the chelating diphosphines 1,1'-(PPh2)2-Fe(eta-C5H4)2 and 1,2-(PPh2)2-closo-1,2-C2B10H10 react with 1a to yield oxidative-insertion species [1-SMe2-2,2-(CO)2-11-(mu-H)-2,7,11-{Ru2(mu-H)(micro-[1',1'-(PPh2)2-Fe(eta-C5H4)2])(CO)4}-closo-2,1-RuCB10H8] 7 and [1-SMe2-2,2-(CO)2-11-(mu-H)-2,7,11-{Ru2(mu-H)(CO)4(1',2'-(PPh2)2-closo-1',2'-C2B10H10)}-closo-2,1-RuCB10H8] 8, respectively. In toluene at reflux temperatures, 1a with Bu(t)SSBu(t) gives [1-SMe2-2,2-(CO)2-7-(mu-SBu(t))-11-(mu-H)-2,7,11-{Ru2(mu-H)(mu-SBu(t))(CO)4}-closo-2,1-RuCB10H8] 9, and with Bu(t)C [triple bond] CH gives [1-SMe2-2,2-(CO)2-7-{mu:eta2-(E)-CH=C(H)Bu(t)}-11-{mu:eta2-(E)-CH=C(H)Bu(t)}-2,7,11-{Ru2(CO)5}-closo-2,1-RuCB10H8] 10. In the latter, two alkyne groups have inserted into cage B-H groups, with one of the resulting B-vinyl moieties involved in a C-H...Ru agostic bond. Oxidation of 1a with I2 or HgCl2 affords the mononuclear ruthenium complex [1-SMe2-2,2,2-(CO)3-closo-2,1-RuCB10H10] 11.  相似文献   

8.
Reactions of N,N,N-tridentate quinolinyl anilido-imine ligands with AlMe(3) afford mononuclear aluminum complexes {κ(3)-[{2-[ArN[double bond, length as m-dash]C(H)]C(6)H(4)}N(8-C(9)H(6)N)]}AlMe(2) (Ar = 2,6-Me(2)C(6)H(3) (1a), 2,6-Et(2)C(6)H(3) (1b), 2,6-(i)Pr(2)C(6)H(3) (1c)) or dinuclear complexes AlMe(3){κ(1)-[{2-[ArN[double bond, length as m-dash]C(H)C(6)H(4)]N(8-C(9)H(6)N)}-κ(2)]AlMe(2) (R = 2,6-Me(2)C(6)H(3) (2a), 2,6-Et(2)C(6)H(3) (2b), 2,6-(i)Pr(2)C(6)H(3) (2c)) depending on the ratios of reactants used. Similar reactions of ZnEt(2) with these ligands give the monoligated ethyl zinc complexes {κ(3)-[{2-[ArN[double bond, length as m-dash]C(H)]C(6)H(4)}N(8-C(9)H(6)N)]}ZnEt (Ar = 2,6-Me(2)C(6)H(3) (3a), 2,6-Et(2)C(6)H(3) (3b), 2,6-(i)Pr(2)C(6)H(3) (3c)) or bisligated complexes {κ(3)-[{2-[ArN[double bond, length as m-dash]C(H)]C(6)H(4)}N(8-C(9)H(6)N)]}Zn{κ(2)-[{2-[ArN[double bond, length as m-dash]C(H)]C(6)H(4)}N(8-C(9)H(6)N)]} (Ar = 2,6-Me(2)C(6)H(3) (4a), 2,6-Et(2)C(6)H(3) (4b), 2,6-(i)Pr(2)C(6)H(3) (4c)). These complexes were well characterized by NMR and the structures of 1a, 2a, 2c, 3b and 4c were confirmed by X-ray diffraction analysis. The aluminum and zinc complexes were tested to initiate lactide polymerization in which the zinc complexes show moderate to high activities in the presence of benzyl alcohol.  相似文献   

9.
The reaction between Na, t BuPCl 2 , and PCl 3 in thf gives Na[ cyclo -( t Bu 4 P 5 )] ( 1 ). 1 reacts with PCl 3 to yield ( cyclo - t Bu 3 P 4 ) t BuPCl ( 2 ), and with a proton source, such as HCl, NH 4 Cl, or t BuCl, to give cyclo - t Bu 4 P 5 H ( 3 ). The reaction of 1 with [MCl 2 (PRR' 2 ) 2 ] (M = Ni; R = R' = Et; M = Pd, Pt, R = Ph, R' = Me) gives [Ni{ cyclo -( t Bu 3 P 5 )}(PEt 3 ) 2 ] ( 4 ), [Pd{ cyclo -( t Bu 4 P 5 )} 2 ] ( 5 ), and [PtCl{ cyclo -( t Bu 3 P 4 ) t BuP}(PPhMe 2 )] ( 6 ). 1-6 were characterized by 31 P{ 1 H} NMR spectroscopy, and 1 and 4-6 were also characterized by X-ray crystallography.  相似文献   

10.
Pyridyl-amido catalysts have emerged recently with great promise for olefin polymerization. Insights into the activation chemistry are presented in an initial attempt to understand the polymerization mechanisms of these important catalysts. The activation of C1-symmetric arylcyclometallated hafnium pyridyl-amido precatalysts, denoted Me2Hf{N(-),N,C(-)} (1, aryl = naphthyl; 2, aryl = phenyl), with both Lewis (B(C6F5)3 and [CPh3][B(C6F5)4]) and Br?nsted ([HNR3][B(C6F5)4]) acids is investigated. Reactions of 1 with B(C6F5)3 lead to abstraction of a methyl group and formation of a single inner-sphere diastereoisomeric ion pair [MeHf{N(-),N,C(-)}][MeB(C6F5)3] (3). A 1:1 mixture of the two possible outer-sphere diastereoisomeric ion pairs [MeHf{N(-),N,C(-)}][B(C6F5)4] (4) is obtained when [CPh3][B(C6F5)4] is used. [HNR3][B(C6F5)4] selectively protonates the aryl arm of the tridentate ligand in both precatalysts 1 and 2. A remarkably stable [Me2Hf{N(-),N,C2}][B(C6F5)4] (5) outer-sphere ion pair is formed when the naphthyl substituent is present. The stability is attributed to a hafnium/eta(2)-naphthyl interaction and the release of an eclipsing H-H interaction between naphthyl and pyridine moieties, as evidenced through extensive NMR studies, X-ray single crystal investigation and DFT calculations. When the aryl substituent is phenyl, [Me2Hf{N(-),N,C2}][B(C6F5)4] (10) is originally obtained from protonation of 2, but this species rapidly undergoes remetalation, methane evolution, and amine coordination, giving a diastereomeric mixture of [MeHf{N(-),N,C(-)}NR3][B(C6F5)4] (11). This species transforms over time into the trianionic-ligated [Hf{N(-),C(-),N,C(-)}NR3][B(C6F5)4] (12) through activation of a C-H bond of an amido-isopropyl group. In contrast, ion pair 5 does not spontaneously undergo remetalation of the naphthyl moiety; it reacts with NMe2Ph leading to [MeHf{N(-),N}NMe2C6H4][B(C6F5)4] (7) through ortho-metalation of the aniline. Ion pair 7 successively undergoes a complex transformation ultimately leading to [Hf{N(-),C(-),N,C(-)}NMe2Ph][B(C6F5)4] (8), strictly analogous to 12. The reaction of 5 with aliphatic amines leads to the formation of a single diastereomeric ion pair [MeHf{N(-),N,C(-)}NR3][B(C6F5)4] (9). These differences in activation chemistry are manifested in the polymerization characteristics of these different precatalyst/cocatalyst combinations. Relatively long induction times are observed for propene polymerizations with the naphthyl precatalyst 1 activated with [HNMe3Ph][B(C6F5)4]. However, no induction time is present when 1 is activated with Lewis acids. Similarly, precatalyst 2 shows no induction period with either Lewis or Br?nsted acids. Correlation of the solution behavior of these ion pairs and the polymerization characteristics of these various species provides a basis for an initial picture of the polymerization mechanism of these important catalyst systems.  相似文献   

11.
鲁晓明  刘顺诚  刘育  卜显和  洪少良 《化学学报》1997,55(10):1009-1018
为研究大环化合物对客体分子的选择性, 合成了通式为[NaL(Et2O)]2Na2Mo8O26的三种新型N-对R苯基氮杂15冠5八钼多酸钠超分子配合物(其中L分别为: N-苯基氮杂15冠5、N-对氯苯基氮杂15冠5和N-对甲苯基氮杂15冠5), 进行了元素分析, 红外光谱与核磁共振等结构参数的表征, 对R基为CH3的标题配合物作了X射线四圆衍射测定, 该晶体属单斜晶系, 空间群为P21/a,a=1.4590(4)nm, b=1.3817(3)nm, c=1.7639(5)nm, β=112.67(2)°, V=3.281(1)nm^3, Mr=2021.3, Dc=2.11g/cm^3,μ=2.37mm^-^1, F(000)=2048, R=0.045和Rw=0.057, 与[Na.(DB18C6)(CH3OH)M6O19和[Na(DB24C8)]2M6O19进行比较,结果表明: 大环化合物不仅对客体金属离子有分子识别性, 而且对与之抗衡的多酸阴离子也具有影响。  相似文献   

12.
Lee CM  Chen CH  Chen HW  Hsu JL  Lee GH  Liaw WF 《Inorganic chemistry》2005,44(19):6670-6679
The five-coordinated iron-thiolate nitrosyl complexes [(NO)Fe(S,S-C6H3R)2]- (R = H (1), m-CH3 (2)), [(NO)Fe(S,S-C6H2-3,6-Cl2)2]- (3), [(NO)Fe(S,S-C6H3R)2]2- (R = H (10), m-CH3 (11)), and [(NO)Fe(S,S-C6H2-3,6-Cl2)2]2- (12) have been isolated and structurally characterized. Sulfur oxygenation of iron-thiolate nitrosyl complexes 1-3 containing the {Fe(NO)}6 core was triggered by O2 to yield the S-bonded monosulfinate iron species [(NO)Fe(S,SO2-C6H3R)(S,S-C6H3R)]- (R = H (4), m-CH3 (5)) and [(NO)Fe(S,SO2-C6H2-3,6-Cl2)(S,S-C6H2-3,6-Cl2)]2(2-) (6), respectively. In contrast, attack of O2 on the {Fe(NO)}7 complex 10 led to the formation of complex 1 accompanied by the minor products, [Fe(S,S-C6H4)2]2(2-) and [NO3]- (yield 9%). Reduction of complexes 4-6 by [EtS]- in CH3CN-THF yielded [(NO)Fe(S,SO2-C6H3R)(S,S-C6H3R)]2- (R = H (7), m-CH3 (8)) and [(NO)Fe(S,SO2-C6H2-3,6-Cl2)(S,S-C6H2-3,6-Cl2)]2- (9) along with (EtS)2 identified by 1H NMR. Compared to complex 10, complexes 7-9 with the less electron-donating sulfinate ligand coordinated to the {Fe(NO)}7 core were oxidized by O2 to yield complexes 4-6. Obviously, the electronic perturbation of the {Fe(NO)}7 core caused by the coordinated sulfinate in complexes 7-9 may serve to regulate the reactivity of complexes 7-9 toward O2. The iron-sulfinate nitrosyl species with the {Fe(NO)}6/7 core exhibit the photolabilization of sulfur-bound [O] moiety. Complexes 1-4-7-10 (or 2-5-8-11 and 3-6-9-12) are interconvertible under sulfur oxygenation, redox processes, and photolysis, respectively.  相似文献   

13.
Journal of Structural Chemistry - Chain coordination polymer [Cu(NH3)2]2[{Cu(NH3)}2{Cu(NH3)(OH)}Re6Se8(CN)6] (1) is obtained by a reaction of Cs2.75K1.25[Re6Se8(CN)4(OH)2]·H2O with CuCN in the...  相似文献   

14.
KR-31831 ((2S,3R,4S)-4-(((1H-imidazol-2-yl)methyl)(4-chlorophenyl)amino)-6-amino-2-(dimethoxymethyl)-2-methyl-3,4-dihydro-2H-chromen-3-ol) is a novel antiangiogenic agent. In vitro and in vivo metabolism of KR-31831 in rats has been investigated using LC-MS and LC-MS/MS analysis. Incubation of rat liver microsomes and hepatocytes with KR-31831 produced three metabolites (M1-M3). M1, M2, and M3 were identified as N-((1H-imidazol-2-yl)methyl)-4-chlorobenzenamine, (2R,3R,4S)-4-(((1H-imidazol-2-yl)methyl)(4-chlorophenyl) amino)-6-amino-2-(hydroxymethyl)-2-methyl-3,4-dihydro-2H-chromen-3-ol, and N-((2S,3R,4S)-4- (((1H-imidazol-2-yl)methyl)(4-chlorophenyl)amino)-2-(dimethoxymethyl)-3-hydroxy-2-methyl-3,4-dihydro-2H-chromen-6yl)acetamide, respectively, by co-chromatography with the authentic standards and by comparison with product ion spectra of the authentic standards. Those in vitro metabolites were also detected in bile, plasma, or urine samples after an intravenous administration of KR-31831 to rats. The metabolic routes for KR-31381 included the metabolism of acetal group to hydroxymethyl group (M2), N-dealkylation to M1, and N-acetylation at the 6-amino group (M3).  相似文献   

15.
Transition Metal Chemistry - (R)-[Ru(η6-p-MeC6H4iPr)Cl2{Ph2PNHCH(CH3)(C6H4-4-F)}] (1) and cis-(R,R)-[PtCl2{Ph2PNHCH(CH3)(C6H4-4-F)}2] (2) have been obtained by the reaction of the chiral...  相似文献   

16.
The crystalline compounds [Mg(Br)(L)(thf)].0.5Et2O [L = {N(R)C(C6H3Me2-2,6)}2SiR, R = SiMe3] (1), [Mg(L){N=C=C(C(Me)=CH)2CH2}(D)2] [D = NCC6H3Me2-2,6 (2), thf (3)] and [{Mg(L)}2{mu-OSO(CF3)O-[mu}2] (4) were prepared from (a) Si(Br)(R){C(C6H3Me2-2,6)=NR}2 and Mg for (1), (b) [Mg(SiR3)2(thf)2] and 2,6-Me2C6H3CN (5 mol for (2), 3 mol for (3)), and (c) (2) + Me3SiOS(O)2CF3 for (4); a coproduct from (c) is believed to have been the trimethylsilyl ketenimide Me3SiN=C=C{C(Me)=CH}2CH2 (5).  相似文献   

17.
魏荣宝  李洪波  梁娅 《化学学报》2007,65(19):2151-2154
以1,4-环己二酮、丙二酸二乙酯及多元醇等为原料, 经过两次“一锅煮”法合成了六种二代螺环树形化合物1,2,3,4,5,6,7,8,9,10,11,12-十二氢-2,2;6,6;10,10-三[3,3-二(烷氧羰基)-1,1-环亚丁基二甲氧基]三亚苯基螺环树形化合物, 其中烷氧基为异戊氧基、三羟甲基甲氧基、2,2-二溴甲基-3-羟丙氧基、2,2-二羟甲基丙氧基、二羟甲基膦甲氧基和(N-羟甲基-N-二羟甲基氨基乙基)甲氧基. 利用IR, NMR, MS和元素分析对合成的化合物进行了结构认证, 对影响反应的因素进行了讨论.  相似文献   

18.
Reaction of [Ru(p-cymene)Cl2]2 with [H7P8W48O184]33- (P8W48) in aqueous acidic medium results in the organometallic derivative [{K(H2O)}3{Ru(p-cymene)(H2O)}4P8W49O186(H2O)2]27- (1); in addition to the four {Ru(p-cymene)(H2O)} units, an unusual WO6 group with four equatorial, terminal ligands is also grafted to the crown-shaped P8W48 precursor.  相似文献   

19.
Unsaturated acyclic pyrimidine analogues, 1-{1-[1-(hydroxymethyl)prop-2-enyloxy]prop-2-enyl}uracil, 1-{1-[1-(hydroxymethyl)prop-2-enyloxy]prop-2-enyl}thymine and 1-{1-[1-(hydroxymethyl)prop-2-enyloxy]prop-2-enyl}cytosine having two asymmetric carbon atoms have been prepared in good yield starting from uridine and 5-methyluridine. The bis-vinyl thymine derivative underwent ring closure metathesis to give d4T, thus providing a novel synthesis of this compound.  相似文献   

20.
The nine-vertex ferracarborane salt [N(PPh3)2][7,7,7-(CO)3-closo-7,1-FeCB7H8] (1) reacts with an excess of [IrCl(CO)(PPh3)2] in the presence of Tl[PF6] to form, successively, the bimetallic species [7,7,9,9,9-(CO)5-7-PPh3-closo-7,9,1-IrFeCB6H7] (3), in which one {BH}- vertex has formally been subrogated by an {Ir(CO)2(PPh3)} unit, and the trimetallic complex [6,7,9-{Ir(CO)(PPh3)2}-7,9-(mu-H)2-7,9,9-(CO)3-7-PPh3-closo-7,9,1-IrFeCB6H6] (5), which contains an {FeIr2} triangle. The {FeIrCB6} core in 5 resembles that in 3 with, in addition, the Fe...Ir connectivity being spanned by an {Ir(CO)(PPh3)2} fragment and the consequent Fe-Ir and Ir-Ir bonds bridged by hydrido ligands. In contrast to the above, treatment of the 10-vertex diferracarborane salt [N(PPh3)2][6,6,6,10,10,10-(CO)6-closo-6,10, 1-Fe2CB7H8] (2) with the same reagents yields two very different, trimetallic complexes, namely [8,10-{Ir(mu-PPh2)(Ph)(CO)(PPh3)}-8-(mu-H)-6,6,6,10,10-( CO)5-closo-6,10,1-Fe2CB7H7] (6) and [6,7,10-{Fe(CO)3}-6-(mu-H)-6,10,10,10-(CO)4-6-PPh3-closo-6,10,1-IrFeCB7H7] (7). In 6, an exo-polyhedral {IrPh(CO)(PPh3)} moiety is attached to a {closo-6,10,1-Fe2CB7} framework via a PPh2-bridged Fe-Ir bond and a B-HIr agostic-type linkage, the iridium center formally having inserted into one P-Ph bond of a PPh3 unit. Complex 7 contains an {IrFeCB7} cluster core, with an exo-polyhedral {Fe(CO)3} moiety bridging a {BIrFe} triangular face and with an additional Ir-H-Fe bridge. However, this metal atom arrangement reveals that iridium and iron moieties have exchanged exo- and endo-polyhedral sites with respect to the 10-vertex metallacarborane. X-ray diffraction studies upon 3, 5, 6, and 7 confirmed their novel structural features; some preliminary reactivity studies upon these compounds are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号