首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 917 毫秒
1.
The efficient photoinduced electron transfer from a stilbene derivative incarcerated within a negatively charged organic nanocapsule to positively charged acceptors (methyl viologen and a pyridinium salt) adsorbed outside and the back electron transfer were controlled by supramolecular effects.  相似文献   

2.
Photoinduced electron transfer in supramolecular assemblies consisting of π-donor dialkoxyarene-functionalized photosensitizers and bipyridinium electron acceptors is examined. The photosensitizers include Ru(II)-tris-bipyridine complexetethered by multi-branch one-shell and two-shell dialkoxybenzene π-donor sites or a Zn(II)-porphyrin capped by a dialkoxybenzene receptor site. The photosensitizer/electron-acceptor supramolecular complexes behave as non-covalent diads and polyads. Effective internal electron transfer quenching within the supramolecular assemblies proceeds. A quantitative model that accounts for the photoinduced electron transfer in the systems is formulated.  相似文献   

3.
The efficiency of photoinduced charge separation across surfactant interfaces of micelles and vesicles depends in part on the location of electron donors and acceptors relative to the interface. Achievement and assessment of control of such location by the addition of pendant alkyl chains to donors and acceptors is shown to be achievable. The net photoionization efficiency can be measured by electron spin resonance of radical ions in frozen surfactant solutions. Assessment of relative locations of radical ions with respect to a surfactant interface has been achieved by analysis of electron spin-echo modulation from deuterium in deuterated water at the interface.Results for a series of positive, neutral and negatively charged alkylphenothiazine derivatives in vesicle, micelle and reverse micelle surfactant assemblies of different interface charge are discussed. Controlling factors involve the alkyl chain length of the electron donors, the relative charge of the surfactant assembly interface versus that of the electron donor derivative, and the degree of molecular order in the interface. Secondary factors include alkyl chain bending, photoinduced radical conversion and back electron transfer.  相似文献   

4.
采用富勒吡咯烷衍生物中的吡啶或咪唑基与二茂铁修饰的金属酞菁轴向配位构筑了二茂铁-酞菁-富勒烯超分子三元体系, 通过紫外-可见光谱滴定法测定了其配位稳定性(Kassoc约为8.58×104 L/mol). 稳态和时间分辨荧光光谱研究结果表明, 在该超分子三元体系中发生了快速的光诱导电子转移(kCS约为109 s-1), 并具有较高的电荷分离态量子产率(ФCS=0.88). 循环伏安法数据表明, 其电荷分离驱动力ΔGCS为负值(-0.60 eV), 说明酞菁和富勒烯之间容易形成电荷分离态.  相似文献   

5.
An organized molecular assembly composed of two ruthenium polypyridine complexes, Ru(bpy)(2)(bpz)(2+) and Ru(bpy)(2)(H(2)O)(2)(2+) (where bpy = 2, 2'-bipyridine and bpz = 2, 2'-bipyrazine), has been prepared in adjacent supercages of Y-zeolite. This material has been characterized by diffuse reflectance, electronic absorption, electronic emission, and resonance Raman (RR) spectroscopy, as well as lifetime measurements. The spectral results confirm the identity of the entrapped complexes and resonance Raman measurements show that the relative concentrations of the two complexes within the zeolite particles are identical. A dramatic decrease in emission intensity observed for the adjacent cage assembly, relative to that observed for an appropriate reference material composed of a mixture of zeolite particles containing the separated complexes, indicates strong interaction between the adjacent complexes which provides an additional nonradiative decay pathway. The excited state lifetime measurements implicate a very short-lived component, dominating the decay curve at early times, which is most reasonably attributed to excited-state electron-transfer quenching of the adjacent cage pair. More importantly, analysis of diffuse reflectance spectra acquired during selective (sensitizer) irradiation of a sample of this material, wherein the remaining cages are filled with a suitable acceptor (MV(2+)), provides direct evidence for oxidation of the Ru(bpy)(2)(H(2)O)(2)(2+) donor complex, confirming the targeted synergy of the adjacent cage assembly.  相似文献   

6.
The dependence of the rate constant for the quenching of the triplet state of xanthene dyes by cyanide complexes of transition metals on the free energy change of the photoinduced electron transfer reaction is correlational, rather than functional, in character. Experimentally, it was proved that there is no spin forbiddance in the photoinduced electron transfer reaction between these reactants. For the photoreactions with reactants in which dyes are electron acceptors, the values of the intrinsic barrier of electron transfer and the pre-exponential factor of the reaction rate constant were determined. A method for the determination of calculation errors for these values was proposed.  相似文献   

7.
Bistridentate metal complexes as photosensitizers are ideal building blocks in the construction of rod-like isomer-free assemblies for intramolecular photoinduced charge separation. Approaches to obtain long-lived luminescent metal-to-ligand charge transfer excited states in bistridentate RuII polypyridine complexes via the manipulation of metal-centered state energies are discussed. Following an introduction to general strategies to prolong the excited state lifetimes, more recent work is explored in detail where tridentate ligands with expanded 2,2′:6′,2″-terpyridine cores are utilized. The synthesis of these tridentate ligands and their corresponding RuII complexes is covered. Bistridentate RuII complexes with microsecond metal-to-ligand charge transfer excited state lifetimes are described, and are used in electron donor–photosensitizer–electron acceptor assemblies for efficient vectorial photoinduced charge separation.  相似文献   

8.
Meyer GJ 《Inorganic chemistry》2005,44(20):6852-6864
Strategies toward the realization of molecular control of interfacial charge transfer at nanocrystalline semiconductor interfaces are described. Light excitation of coordination compounds, based on (dpi)6 transition metals, anchored to wide band-gap semiconductors, such as TiO2, can initiate electron-transfer processes that ultimately reduce the semiconductor. Such photoinduced charge-separation processes are a key step for solar energy conversion. The thermodynamics and kinetic rate constants for three different interfacial charge separation mechanisms are discussed. Tuning the energetic position of the semiconductor conduction band relative to the molecular sensitizer has provided new insights into interfacial charge transfer. Supramolecular compounds that efficiently absorb light, promote interfacial electron transfer, and feature additional functions such as intramolecular electron transfer when bound to semiconductor surfaces have also been studied. New approaches for enhancing charge-separation lifetimes for solar energy conversion are presented.  相似文献   

9.
The synthesis and the photophysical properties of a series of noncovalently assembled donor-acceptor systems, dyads, is reported. The presented approach uses an "innocent" coordination compound, a scandium(III) acetyl acetonate derivative, as core and promotor of the dyad formation. Intercomponent photoinduced energy transfer or electron transfer within the dynamic assembly, which yields to a statistical library of donor-acceptor systems, is reported. The assemblies for energy-transfer processes are constituted by an energy donor, Ru(bpy)(3)(2+)-based component (bpy = 2,2'-bipyridine), and by an energy-acceptor moiety, anthracene-based unit, both substituted with a chelating ligand, acetyl acetone, that via coordination with a scandium ion will ensure the formation of the dyad. If N,N,N'N'-tetramethyl-2,5-diaminobenzyl-substituted acetyl acetonate ligands are used in the place of 9-acyl-anthracene, intramolecular photoinduced electron transfer from the amino derivative (electron donor) to the Ru(bpy)(3)(2+)-unit was detected upon self-assembly, mediated by the scandium complex. The photophysical processes can be studied on the lifetime of the kinetically labile complexes.  相似文献   

10.
A rigid rod-like organic molecular ensemble comprised of a triarylamine electron donor, a 2,2'-bipyridine (bpy) ligand, and a 9,10-anthraquinone acceptor was synthesized and reacted with suitable metal precursors to yield triads with Ru(bpy)(3)(2+), Os(bpy)(3)(2+), and [Ir(2-(p-tolyl)pyridine)(2)(bpy)](+) photosensitizers. Photoexcitation of these triads leads to long-lived charge-separated states (τ = 80-1300 ns) containing a triarylamine cation and an anthraquinone anion, as observed by transient absorption spectroscopy. From a combined electrochemical and optical spectroscopic study, the thermodynamics and kinetics for the individual photoinduced charge-separation and thermal charge-recombination events were determined; in some cases, measurements on suitable donor-sensitizer or sensitizer-acceptor dyads were necessary. In the case of the ruthenium and iridium triads, the fully charge-separated state is formed in nearly quantitative yield.  相似文献   

11.
Donor-bridge-acceptor triad (Por-2TV-C(60)) and tetrad molecules ((Por)(2)-2TV-C(60)), which incorporated C(60) and one or two porphyrin molecules that were covalently linked through a phenylethynyl-oligothienylenevinylene bridge, were synthesized. Their photodynamics were investigated by fluorescence measurements, and by femto- and nanosecond laser flash photolysis. First, photoinduced energy transfer from the porphyrin to the C(60) moiety occurred rather than electron transfer, followed by electron transfer from the oligothienylenevinylene to the singlet excited state of the C(60) moiety to produce the radical cation of oligothienylenevinylene and the radical anion of C(60). Then, back-electron transfer occurred to afford the triplet excited state of the oligothienylenevinylene moiety rather than the ground state. Thus, the porphyrin units in (Por)-2TV-C(60) and (Por)(2)-2TV-C(60) acted as efficient photosensitizers for the charge separation between oligothienylenevinylene and C(60).  相似文献   

12.
The present paper highlights results of a systematic study of photoinduced electron transfer, where the fundamental aspects of the photochemistry occurring in solutions and in artificially or self-assembled molecular systems are combined and compared. In photochemical electron transfer (ET) reactions in solutions the electron donor, D, and acceptor, A, have to be or to diffuse to a short distance, which requires a high concentration of quencher molecules and/or long lifetimes of the excited donor or acceptor, which cannot always be arranged. The problem can partly be avoided by linking the donor and acceptor moieties covalently by a single bond, molecular chain or chains, or rigid bridge, forming D-A dyads. The covalent combination of porphyrin or phthalocyanine donors with an efficient electron acceptor, e.g. fullerene, has a two-fold effect on the electron transfer properties. Firstly, the electronic systems of the D-A pair result in a formation of an exciplex intermediate upon excitation both in solutions and in solid phases. The formation of the exciplex accelerates the ET rate, which was found to be as fast as >10(12) s(-1). Secondly, the total reorganization energy can be as small as 0.3 eV, even in polar solvents, which allows nanosecond lifetimes for the charge separated (CS) state. Molecular assemblies can form solid heterogeneous, but organized systems, e.g. molecular layers. This results in more complex charge separation and recombination dynamics. A distinct feature of the ET in organized assemblies is intermolecular interactions, which open a possibility for a charge migration both in the acceptor and in the donor layers, after the primary intramolecular exciplex formation and charge separation in the D-A dyad. The intramolecular ET is fast (35 ps) and efficient, but the formed interlayer CS states have lifetimes in microsecond or even second time domain. This is an important result considering possible applications.  相似文献   

13.
Single- and multiwalled carbon nanotubes have been covalently functionalized with free-base porphyrin. The quantity of porphyrin linked to the surface was determined from thermogravimetric and UV-vis analysis. A reversible protonation equilibrium between the attached porphyrin and the residual acid groups of the carbon nanotubes has been identified. Steady-state fluorescence emission spectrum of the solutions of porphyrin-linked carbon nanotubes shows that the porphyrins act as energy absorbing and electron transferring antennae, and the carbon nanotubes act as efficient electron acceptors. The porphyrin-linked carbon nanotubes show 95-100% emission quenching, indicating a fast photoinduced electron transfer.  相似文献   

14.
Photoinduced electron-transfer processes between fullerene (C60) and 1,8-bis(dimethylamino)naphthalene, which is called a proton-sponge (PS), have been investigated by means of laser flash photolysis in the presence and absence of CF3CO2H. For a mixture of C60 and PS, the transient absorption spectra showed the rise of the C60 radical anion with concomitant decay of the C60 triplet (3C60), suggesting that photoinduced intermolecular electron transfer occurs via 3C60 in high efficiency in polar solvent. For a covalently bonded C60-PS dyad, photoinduced intramolecular charge-separation process takes place via the excited singlet state of the C60 moiety, although charge recombination occurs within 10 ns. For both systems, electron-transfer rates were largely decelerated by addition of a small amount of CF3CO2H, leaving the long-lived 3C60. These observations indicate that the energy levels for charge-separated states of the protonated PS and C60 become higher than the energy level of the 3C60 moiety, showing low donor ability of the protonated PS. Thus, intermolecular electron-transfer process via 3C60 for C60-PS mixture and intramolecular charge-separation process via 1C60-PS for C60-PS dyad were successfully controlled by the combination of the light irradiation with a small amount of acid.  相似文献   

15.
We report heteroleptic ruthenium complexes of terpyridine (tpy) ligands with directly linked carboxylic acid anchors. These complexes feature methyl or methoxy-substituted 4′−Phtpy as donor ligands. We prepared these heteroleptic complexes from the ruthenium (II) precursor via a milder route to preclude the homoleptic complex formation. The donor−acceptor arrangement of tpy ligands in these ruthenium complexes renders visible light absorption giving metal and ligand-to-ligand charge transfer excitations at c.a. 490 nm. We evaluate the effect of the tpy donor substituents on the light-harvesting ability in Dye-Sensitized Solar Cells (DSSCs) and compare their photosensitizing ability with heteroleptic complexes bearing phenyl spacer at the acceptor end. Further, scrutinizing their photovoltaic performance, we studied their electron transfer kinetics in DSSCs using electrochemical impedance spectroscopy. This paper presents the structure-photosensitization relationship of these heteroleptic ruthenium complexes through a combined experimental and computational approach.  相似文献   

16.
本文利用核磁氢谱、吸收光谱和荧光光谱证明了环双(百草枯对苯撑)(CBPQT)与双2-萘甲酸三缩四乙二醇(N-P4-N)在乙腈溶液中能够形成1:1的二元超分子给受体体系.瞬态吸收光谱的研究表明该超分子体系中光诱导电子转移的速率kCS>1.0×108s-1,电子回传的速率kCR=1.26×103s-1,光诱导电子转移所生成电荷分离态的寿命长达794μs.  相似文献   

17.
Lifetimes of the photoinduced charge-separated states for composite molecular systems of covalently bonded fullerenes with electron donors are usually very long compared with those of the flat electron-acceptor molecules with functional groups such as keton and cyano-groups. In order to confirm such long-lived charge-separated states, it is very important to carefully identify the transient radical ion pairs by observing both the radical anions and the radical cations in the same time. However, in general, assignments of the transient species are not easy, because the absorption bands overlap with those of other species such as short lived S1-states and long-lived T1-states. In this review, we selected reliable data of the dyads studied mainly by the transient absorption spectral methods in the wide wavelength regions (UV–vis–NIR) and wide time regions (picosecond, nanosecond, microsecond, and millisecond). The lifetimes of the charge-separated states evaluated at room temperature are summarized in order to reveal the factors controlling the lifetimes of photoinduced charge-separated states of fullerene-donor molecular systems. In most cases, the rate parameters and efficiencies for photoinduced charge-separation and charge-recombination processes can be reasonably interpreted by the concepts based on the Marcus theory; some Marcus parameters were experimentally evaluated by temperature dependency of the rate parameters. In addition, spin-multiplicity of the charge-separation precursors and generated radical ion pair may play important roles. As a whole, selections of the kinds of the electron-donors, lengths of the bridges, solvent polarities, which strongly affect the photoinduced electron transfer processes, are all important to achieve the long lifetimes of the charge-separated states.  相似文献   

18.
Lin YH  Wu HH  Wong KT  Hsieh CC  Lin YC  Chou PT 《Organic letters》2008,10(15):3211-3214
Covalent linkage of dendritic carbazole-based donors and 1,3,4-oxdiazole-based acceptors renders novel bipolar dendrimers that can efficiently facilitate the photoinduced electron transfer (PET) process. Photodynamic studies indicated that the PET rate of bipolar dendrimers DA1 and DA2 can be modulated by the number of acceptors presented in the molecule.  相似文献   

19.
Anion binding has emerged as an attractive strategy to construct supramolecular electron donor-acceptor complexes. In recent years, the level of sophistication in the design of these systems has advanced to the point where it is possible to create ensembles that mimic key aspects of the photoinduced electron-transfer events operative in the photosynthetic reaction centre. Although anion binding is a reversible process, kinetic studies on anion binding and dissociation processes, as well as photoinduced electron-transfer and back electron-transfer reactions in supramolecular electron donor-acceptor complexes formed by anion binding, have revealed that photoinduced electron transfer and back electron transfer occur at time scales much faster than those associated with anion binding and dissociation. This difference in rates ensures that the linkage between electron donor and acceptor moieties is maintained over the course of most forward and back electron-transfer processes. A particular example of this principle is illustrated by electron-transfer ensembles based on tetrathiafulvalene calix[4]pyrroles (TTF-C4Ps). In these ensembles, the TTF-C4Ps act as donors, transferring electrons to various electron acceptors after anion binding. Competition with non-redox active substrates is also observed. Anion binding to the pyrrole amine groups of an oxoporphyrinogen unit within various supramolecular complexes formed with fullerenes also results in acceleration of the photoinduced electron-transfer process but deceleration of the back electron transfer; again, this is ascribed to favourable structural and electronic changes. Anion binding also plays a role in stabilizing supramolecular complexes between sulphonated tetraphenylporphyrin anions ([MTPPS](4-): M = H(2) and Zn) and a lithium ion encapsulated C(60) (Li(+)@C(60)); the resulting ensemble produces long-lived charge-separated states upon photoexcitation of the porphyrins.  相似文献   

20.
A zinc phthalocyanine endowed with four [18]‐crown‐6 moieties, ZnPcTeCr, has been prepared and self‐assembled with either pyridyl‐functionalized perylenebisimides (PDI‐Py) or fullerenes (C60‐Py) to afford a set of novel electron donor–acceptor hybrids. In the case of ZnPcTeCr, aggregation has been circumvented by the addition of potassium or rubidium ions to lead to the formation of monomers and cofacial dimers, respectively. From fluorescence titration experiments, which gave rise to mutual interactions between the electron donors and the acceptors in the excited state, the association constants of the respective ZnPcTeCr monomers and/or dimers with the corresponding electron acceptors were derived. Complementary transient‐absorption experiments not only corroborated photoinduced electron transfer from ZnPcTeCr to either PDI‐Py or C60‐Py within the electron donor–acceptor hybrids, but also the unexpected photoinduced electron transfer within ZnPcTeCr dimers. In the electron donor–acceptor hybrids, the charge‐separated‐state lifetimes were elucidated to be close to 337 ps and 3.4 ns for the two PDI‐Pys, whereas the longest lifetime for the photoactive system that contains C60‐Py was calculated to be approximately 5.1 ns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号