首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using molecular-dynamics simulations, we study the crystallization of supercooled liquids of charge-stabilized colloidal suspensions, modeled by the Yukawa (screened-Coulomb) potential. By modifying the value of the screening parameter lambda, we are able to invert the stability of the body-centered cubic (bcc) and face-centered cubic (fcc) polymorphs and study the crystal nucleation and growth in the domain of stability of each polymorph. We show that the crystallization mechanism strongly depends on the value of lambda. When bcc is the stable polymorph (lambda=3), the crystallization mechanism is straightforward. Both kinetics and thermodynamics favor the formation of the bcc particles and polymorph selection takes place early during the nucleation step. When fcc is the stable polymorph (lambda=10), the molecular mechanism is much more complex. First, kinetics favor the formation of bcc particles during the nucleation step. The growth of the post-critical nucleus proceeds through the successive cross-nucleation of the stable fcc polymorph on the metastable hcp polymorph as well as of the hcp polymorph on the fcc polymorph. As a result, polymorph selection occurs much later, i.e., during the growth step, than for lambda=3. We then extend our findings established in the case of homogeneous crystal nucleation to a situation of practical interest, i.e., when a seed of the stable polymorph is used. We demonstrate that the growth from the (111) face of a perfect fcc crystal into the melt proceeds through the same mechanisms.  相似文献   

2.
The mechanistic details of the pressure-induced B1-B2 phase transition of rubidium chloride are investigated in a series of transition path sampling molecular dynamics simulations. The B2→B1 transformation proceeds by nucleation and growth involving several, initially separated, nucleation centers. We show how independent and partially correlated nucleation events can function within a global mechanism and explore the evolution of phase domains during the transition. From this, the mechanisms of grain boundary formation are elaborated. The atomic structure of the domain-domain interfaces fully support the concept of Bernal polyhedra. Indeed, the manifold of different grain morphologies obtained from our simulations may be rationalized on the basis of essentially only two different kinds of Bernal polyhedra. The latter also play a crucial role for the B1→B2 transformation and specific grain boundary motifs are identified as preferred nucleation centers for this transition.  相似文献   

3.
The Hoffman‐type coordination compound [Fe(pz)Pt(CN)4] ? 2.6 H2O (pz=pyrazine) shows a cooperative thermal spin transition at around 270 K. Synchrotron powder X‐Ray diffraction studies reveal that a quantitative photoinduced conversion from the low‐spin (LS) state into the high‐spin (HS) state, based on the light‐induced excited spin‐state trapping effect, can be achieved at 10 K in a microcrystalline powder. Time‐resolved measurements evidence that the HS→LS relaxation proceeds by a two‐step mechanism: a random HS→LS conversion at the beginning of the relaxation is followed by a nucleation and growth process, which proceeds until a quantitative HS→LS transformation has been reached.  相似文献   

4.
We report hybrid Monte Carlo molecular simulation results on the crystallization of aluminum from the supercooled liquid. We simulate the entire crystallization process at P=1 atm and at temperatures 20% and 15% below the melting temperature. We demonstrate that crystallization takes place according to the same mechanism for the two degrees of supercooling considered in this work. We show that both nucleation and growth proceed into a random mixing of the hexagonal close packed structure and of the face centered cubic (fcc) phase, with a predominance of the stable fcc form. The concentration of icosahedral (Ih)-like atoms in the supercooled liquid is found to remain constant throughout nucleation and growth, showing that Ih-like atoms do not play an active role in the crystallization process. We also find that the crystallization mechanism of aluminum differs from that observed for simple fluids. While nucleation of simple fluids first proceeds into the metastable body centered cubic (bcc) phase, the fraction of bcc-like atoms in aluminum crystallites always remains very low.  相似文献   

5.
Under electrochemical conditions, the formation of thin mercuric sulphide films on mercury proceeds in three distinct stages. In the first, mercuric sulphide adsorbs over a narrow range of potential to build up a monomolecular layer. This adsorbed layer subsequently rearranges in such a way that its packing density is increased. The rearrangement corresponds to a first order phase transformation, and clear evidence for the nucleation of the rearranged phase has been obtained. Finally the growth of subsequent monolayers of mercuric sulphide proceeds by the nucleation and expansion of two dimensional centres on the rearranged first layer. A variety of electrochemical techniques has been used in this study to characterise these three individual steps in detail.  相似文献   

6.
Behaviours of drawn semi-crystalline poly(ethylene terephthalate) films are investigated by DSC, X-ray diffraction and birefringence measurements. The comparison of the different results confirms the coexistence of two structures into the amorphous part of the material: a completely disordered amorphous phase and a mesomorphic amorphous one. Moreover, for the strongest draw ratio, the calorimetric results show that the drawing effect on the strain induced crystalline structure proceeds by a better orientation of this structure rather than by nucleation and growth of new oriented crystallites.  相似文献   

7.
The transition of peptides and proteins from the solution phase into fibrillar structures is a general phenomenon encountered in functional and aberrant biology and is increasingly exploited in soft materials science. However, the fundamental molecular events underpinning the early stages of their assembly and subsequent growth have remained challenging to elucidate. Here, we show that liquid–liquid phase separation into solute‐rich and solute‐poor phases is a fundamental step leading to the nucleation of supramolecular nanofibrils from molecular building blocks, including peptides and even amphiphilic amino acids. The solute‐rich liquid droplets act as nucleation sites, allowing the formation of thermodynamically favorable nanofibrils following Ostwald's step rule. The transition from solution to liquid droplets is entropy driven while the transition from liquid droplets to nanofibrils is mediated by enthalpic interactions and characterized by structural reorganization. These findings shed light on how the nucleation barrier toward the formation of solid phases can be lowered through a kinetic mechanism which proceeds through a metastable liquid phase.  相似文献   

8.
聚苯胺的成核及生长机理   总被引:15,自引:0,他引:15  
蔡林涛  姚士冰  周绍民 《化学学报》1995,53(12):1150-1156
本文通过恒电位阶跃法研究了聚苯胺在不同介质中的成核与膜的生长过程动力学。结果表明, 在硫酸介质中, 成核过程为扩散控制下的三维连续成核, 得到疏松、多孔的膜; 而在高氯酸介质中, 成核则是电化学动力学控制下的二维成核过程。在高电位时(E>1.02V, vs, SCE)为二维连续成核过程, 而在较低的电位时, 主要表现为二维瞬时成核, 膜层呈网状且致密。  相似文献   

9.
The electrochemical oxidation of silver nanocrystals to silver halide crystals proceeds by a process of nucleation and growth. The mechanism is confirmed by analyzing chronopotentiograms using a new extension of nucleation theory. The theory makes it possible to derive plots of nucleation-growth currents vs potential, and growth rates vs potential, directly from experimental data. Such plots yield powerful insights into the reaction kinetics. In situ AFM imaging reveals that a few thousand of silver nanocrystals are oxidized to only a few tens of silver halide crystals, without pronounced loss of active material. The mechanism of this remarkable process is described in this paper. In particular, it is shown that the decrease in crystal population proceeds via an oversaturated silver solution, i.e., a process that is mediated by “driven” Ostwald ripening across the electrode surface. At the same time, the low solubility of silver species in bulk solution means that few silver ions escape from the surface. This combination of features explains why the transformation from silver to silver halide is near-stoichiometric yet highly reconstructive.Dedicated to our friend and colleague Professor Dr. Alan Bond on the occasion of his 60th birthday  相似文献   

10.
Incorporation of a block copolymer into a thin polymer film is observed to alter both the rate and mechanism by which the film dewets from an immiscible polymer substrate. Films with little or no copolymer dewet by classical nucleation and growth of circular holes, and the dewetting rate decreases with increasing copolymer concentration. Increasing the copolymer content at constant film thickness generates copolymer micelles that adsorb/aggregate along the polymer/polymer interface and promote nonclassical dewetting fluctuations similar in appearance to spinodal dewetting. At higher copolymer concentrations, dewetting proceeds after a lengthy induction period by the nucleation and growth of flower-shaped holes suggestive of film pinning or viscous fingering. Atomic force microscopy of the polymer/polymer interface after removal of the top film by selective dissolution reveals substantial structural development due to copolymer self-assembly.  相似文献   

11.
The behaviour of the transients due to the model of the growth of right-circular cones is fully explored and compared to that of hemispheroids. The conditions that justify the use of the limiting forms of the transient equations for the so-called ‘instantaneous’ and ‘progressive’ nucleation processes are evaluated. Nucleation rates obtained from the fit of the recorded transients to the generalised equations derived for both growth models are compared. It is shown that even in those cases where electrocrystallisation proceeds via nucleation and growth of hemispheroids, analysis of the transients according to the model of the growth of cones results in estimates of nucleation rates which differ by at most a factor of three, and in most cases are as close as half the actual value.  相似文献   

12.
The growing chain molecular dynamics (GCMD) simulation method, a new nonequilibrium molecular dynamics code, is proposed to simulate the polymer chain aggregation behavior during polymerization on a catalyst surface. We found that the growing chain crystallizes on the surface in two stages: the nucleation stage and the crystal growth stage. In the first part of the nucleation period, the short polymerizing chain first absorbs on the surface and can be in either an ordered or disordered structure. Still in the nucleation period, when the chain reaches a degree of polymerization, about 100 bonds, the chain folds into a stable nucleus on the substrate with 3-5 stems. In the crystal growth stage where the polymerization also proceeds, we observed a stem elongation process in combination with a chain folding process. In the stem elongation step, the number of stems in the nucleus remains constant, and all the stems expand together to a length of ca. 5-25 ns. In the subsequent chain folding step, the stem length decreases about 20 bonds within a period of ca. 0.1-0.5 ns. During chain growth, the elongation process and the folding process occur in an alternating and repeated fashion. The crystallization mechanism of the polymerizing chain was discussed.  相似文献   

13.
We use molecular simulations to study polymorph selection during the crystallization of charge-stabilized colloidal suspension. By modifying the conditions of crystallization, we invert the stability of two polymorphs and induce the formation of crystallites whose structure is predominantly that of the stable polymorph. However, our simulations reveal that kinetics play a major role not only during the nucleation step but also in the growth mechanism. The growth of postcritical crystallites of the stable polymorph proceeds through a complex mechanism involving the cross-nucleation of a third metastable polymorph followed by the conversion of this third polymorph into the stable structure.  相似文献   

14.
A molecular mechanism for nucleation for the solid-state polymorph transformation of terephthalic acid is presented. New methods recently developed in our group, aimless shooting and likelihood maximization, are employed to construct a model for the reaction coordinate for the two system sizes studied. The reaction coordinate approximation is validated using the committor probability analysis. The transformation proceeds via a localized, elongated nucleus along the crystal edge formed by fluctuations in the supramolecular synthons, suggesting a nucleation and growth mechanism in the macroscopic system.  相似文献   

15.
The anodic oxidation of silver electrodes in NaOH solution and the reduction of the silver oxides formed were studied by potential step chronoamperometry. Oxidation of Ag to Ag2O is a diffusion-controlled reaction, the diffusion control being established in the solid phase. Oxidation of Ag2O to AgO proceeds via a nucleation and growth-controlled process. The amount of AgO decreased with increasing step height. The current—time curves for this reaction have been analysed with the Kolmogoroff—Avrami equation. Reduction of AgO to Ag2O occurs initially on the outside of the electrode, and the rate of the reaction is limited by diffusion of ions across the thickening layer of Ag2O. Reduction of Ag2O to Ag proceeds via a nucleation and growth reaction.  相似文献   

16.
It has been considered that crystallization of polymer from melt proceeds via the coexistence of molten matrix and growing crystals that have once overcome a nucleation barrier to a critical size. The nucleation process has often been explained analogously with so-called nucleation and growth (NG) behavior of the phase separation of a binary mixture in metastable conditions, although the crystallization in one-component polymer is not a real component separation but a phase transition. Among the mechanisms of polymer crystallization, the topic is whether a liquid–liquid transition between states of different densities within one-component polymers takes place before the aforementioned nucleation process. The liquid–liquid transition between states, which is probably driven by chain orientation, is also categorized into NG and the controversial spinodal decomposition (SD) type processes depending on the quenching depth. This article provides the optical microscopic observations that favor the occurrence of the SD-like process when a one-component polymer melt is very rapidly quenched below a stability limit, including a drastic morphological change from a spherulitic to a spinodal pattern at the critical (or spinodal) temperature. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1817–1822, 2004  相似文献   

17.
Nucleation of the first monolayers of the n-heptyl viologen-bromide or-biphthalate films on SnO2 electrodes was found to be accelerated by the addition of one molecular layer of dimethyldiethoxy (dmde)-silane to the SnO2 surface. Partitioning of the reactant viologen into the non-polar surface layer and lowering of the surface tension against nucleation site growth in the silane layer may both be responsible for the enhanced nucleation rates. Similar acceleration of the nucleation of n-HV+ was found on ion-beam-etched indium-tin oxide-metallized polymer electrodes (MPOTE). A second nucleation site with a much lower, and distinguishable rate of nucleation, was produced on this type of electrode surface. Chronoamperometry and chronoabsorptometry were used to confirm that the nucleation of n-heptyl viologen cation-radical salts follows an instantaneous rather than progressive nucleation mechanism, on any of the surfaces studied.  相似文献   

18.
Crystallization kinetics of crystalline fractions of propylene oxide polymers made with different catalysts have been studied by isothermal dilatometric and microscopical measurements. Isothermal microscopical measurements indicate that spherulite growth in these polymers proceeds from predetermined nuclei. The half time for spherulitic appearance is less than, but of the same order as, the half time for complete crystallization. Only by taking this factor into account can the dilatometric data be represented by the Avrami equation. The deviation of the crystallization isotherm from that predicted from the microscopical data using the Avrami theory is attributed to a secondary crystallization process taking place within the spherulite. Crystallization continues long after spherulites completely occupy the available volume in the polymer. By assuming that the secondary crystallization proceeds as a first-order process in the uncrystallized, but crystallizable, portions of the melt, it is shown that the crystallization isotherms can be completely described in terms of four parameters. These are: (1) the time constant for the primary crystallization process; (2) the time constant for nucleation; (3) the time constant for the secondary crystallization process, and (4) the extent of secondary crystallization. The important conclusions of these studies are: the rates of nucleation and of spherulitic growth are far more dependent on temperature than on stereoregularity; the ratio of the rate of the secondary crystallization process to that of the primary crystallization process is almost independent of temperature, but increases with increasing stereoregularity of the polymer.  相似文献   

19.
An original synthesis for obtaining nanoparticles of SrTiO3 with controlled grain size has been developed. It proceeds by a nucleation/growth mechanism in a pre-stabilized water/alcohol emulsion obtained by continuous stirring. The key parameters of the synthesis are the concentration of precursors and the size of the droplets which has been varied by adjusting the water/alcohol volume-ratio. The change in morphology of the so-obtained powders, characterized by XRD, nitrogen adsorption and TEM experiments, has been explained based on the assumptions that the number of nuclei is proportional to the surface area water/alcohol interface and that the nucleation rate is proportional to the precursor concentration.  相似文献   

20.
Thermoanalytical (TA) and hot-stage microscopic techniques were employed to investigate the complicated behaviour of the non-isothermal dehydration of single crystals of α-NiSO4·6H2O. Non-isothermal dehydration to the tetrahydrate proceeds in two stages: (1) surface nucleation and growth of nuclei, followed by advancement of reaction fronts inward; (2) random nucleation and growth near the reaction front as well as in the bulk. Corresponding TA curves were interpreted to represent diffusional removal of evolved water vapour through the surface layer created in stage (1). The dehydration process of the tetrahydrate to the monohydrate is explained on the basis of textural structures produced in the previous step. Crack formation in the surface layer and rapid escape of the water vapour were observed in this step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号