首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We demonstrate a high-peak-power quasi-continuous-wave diode-pumped passive Q-switched Nd:YAG laser at 946 nm. We make a thorough comparison of the output performance between the saturable absorbers of InGaAs quantum wells (QWs) and a Cr4+:YAG crystal. Experimental results reveal that the saturable absorber of InGaAs QWs is superior to the Cr4+:YAG crystal because of the low nonsaturable losses and leads to a pulse energy of 330 μJ with a peak power greater than 11 kW.  相似文献   

2.
In this letter, we describe the operation of an end-pumped acousto-optic Q-switched Nd:YLF laser. According to the theoretical analysis and calculation for Nd:YLF crystal, the thermal focal length of σ-polarized laser is positive in plane-parallel resonator, while that of π-polarized laser is negative. Hence laser operation at σ-polarized 1313 nm should be stable in plane-parallel cavity. When absorbed pump power is 12.45 W and the pulse repetition frequency is 10 kHz, 3.1 W output laser at 1313 nm is achieved. As a result, the optical–optical conversion efficiency is 25.4 % and slope efficiency is 31.2 %, respectively.  相似文献   

3.
4.
We demonstrated a diode-pumped Nd:YAG laser with a plano-concave resonator. When the pump power is 1.57 W, the output power of 1123-nm laser is 132 mW at the temperature of 20 ℃, and the power change is less than 2% in an hour. A periodically poled LiNbO3 (PPLN) was used as outer cavity frequency-doubling crystal and 561-nm laser was observed.  相似文献   

5.
A pre-pumped passively Q-switched Nd:YAG/Cr: YAG microchip laser is demonstrated with a peak power of 7.5 kW at pulse repetition rate of serveral kilohertzs. The full-width at half-maximum (FWHM) is 734 ps, and the pulse energy is 5.5 μJ with a fundamental spatial mode. In this system, the pre-pumped microchip laser of Nd: YAG/Cr: YAG wafer which is bonded through the thermal-bonding technique has achieved a time jitter value of 12 μs and a Q-switched amplitude instability of 1.26% (1δ) through the pre-pumped modulation technique.  相似文献   

6.
A diode-side-pumped simultaneous dual-wavelength Q-switched Nd:YAG laser around 1.3 μm is demonstrated. With the pumping power of 480 W, a peak power of 43 kW was obtained at the repetition rate of 5 kHz. The maximum average output power is up to 43 W with the slope efficiency of 20.5%, and the pulse duration is 200 ns. This dual-wavelength Q-switched laser with high peak power has a balanceable and stable proportion of dual-wavelength output. PACS 42.55.Xi; 42.60.Gd  相似文献   

7.
The intracavity photon density is assumed to be of Gaussian spatial distributions and its longitudinal variation is also considered in the rate equations for a laser diode (LD) end-pumped passively Q-switched Nd:YVO4 laser with GaAs saturable absorber. These space-dependent rate equations are solved numerically. The dependences of pulse width, pulse repetition rate, single-pulse energy, and peak power on incident pump power are obtained. In the experiment, the LD end-pumped passively Q-switched Nd:YVO4 laser with GaAs saturable absorber is realized and the experimental results are consistent with the numerical solutions.  相似文献   

8.
LD-pumped passively Q-switched red laser at 660 nm   总被引:1,自引:0,他引:1  
A laser diode (LD) pumped Nd:YAG red pulse laser at 660 mn was presented by V:YAG passively Q-switching and LBO intracavity frequency doubling. With 1.6-W incident pump power, average output power of 46-mW, pulse duration (FWHM) of 23.3 ns, pulse repetition rate of 21.6 kHz, peak power of 91.4 W, and single pulse energy of 2.13 μJ were obtained. The beam quality factor M2 was less than 1.2. The fluctuations of pulse energy and repetition rate were less than 3% in 4 hours. The pulsed laser at 660 nm is expected to be used as the pump source of Cr3+:doped crystal to obtain the gain-switched tunable laser.  相似文献   

9.
The phenomena of simultaneous Q-switching and mode-locking in a diode-pumped Nd:YVO4/Cr:YAG/ KTP green laser are reported and discussed in this paper. With 5.3-W pump power, by using a nearly hemispherical cavity (the cavity length is only 97 mm), the results of modulation depth of 70% and the period of 0.6 ns are obtained, the output power and the repetitive frequency of Q-switched pulse are 90 mW and 12 kHz, respectively.  相似文献   

10.
With a 10-W diode laser to pump Nd:GdVO4 crystal in a folded cavity, we demonstrated Cr4+:YAG passively Q-switched Nd:GdVO4 lasers at 1.06 μm. The maximum average output power of 2.1 W and the highest peak power of 625 W were, respectively, obtained when the initial transmissions of the Cr4+:YAG crystals were 90% and 80%. Received: 8 September 1999 / Revised version: 30 December 1999 / Published online: 8 March 2000  相似文献   

11.
We demonstrate for the first time a diode-side-pumped quasi-continuous-wave (QCW) operation of a 1123 nm Nd:YAG ceramic laser. The single 1123 nm wavelength is acquired through precise coating. With a pump power of 1000 W, an output power of 247 W is obtained, corresponding to an optical–optical conversion efficiency of 24.7%. At the maximal output power, the pulse repetition rate and pulse width are measured to be 1.1 kHz and 180 μs, respectively. The numerical simulations for wavelength selectivity from 1112, 1116 and 1123 nm are discussed in detail.  相似文献   

12.
13.
With graphene as saturable absorber, an Nd:KLu(WO4)2 eye-safe laser operating at 1,425 nm is demonstrated. To the best of our knowledge, this is the first demonstration that an Nd:KLu(WO4)2 laser operates at the eye-safe 1.4-μm region. A maximum total average output power of 170 mW is obtained under the pump power of 9.6 W, corresponding to an optical–optical efficiency of 1.77 %. The minimum pulse width and the highest pulse repetition rate are 153 ns and 97 kHz, respectively. Also the characteristics of the graphene used as saturable absorber for a 1.4-μm laser were studied for the first time.  相似文献   

14.
A diode-pumped passively Q-switched Nd:YLF laser was demonstrated by using saturable absorber of Cr4 :YAG. At the incident power of 7.74 W, pure passively Q-switched laser with per pulse energy of 210μJ and pulse width of 19.6 ns at repetition rate of 1.78 kHz was obtained by using Cr4 :YAG with initial transmission of 80%. At the incident power of 8.70 W, a Q-switched mode-locking with average output power of 650 mW was achieved, the overall slop efficiency was 16%, corresponding to the initial transmission of 85% of Cr4 :YAG.  相似文献   

15.
M Wang  L Zhu  W Chen  D Fan 《Optics letters》2012,37(17):3732-3734
We describe high-energy Erbium-doped yttrium aluminum garnet (Er:YAG) lasers operating at 1617?nm, resonantly pumped using 1532?nm fiber-coupled laser diodes. A maximum continuous wave output power of 4.3?W at 1617?nm was achieved with an output coupler of 20% transmission under incident pump power of 29.7?W, resulting in an optical conversion of 14% with respect to the incident pump power. In Q-switched operation, the pulse energy of 11.8?mJ at 100?Hz pulse repetition frequency and 81?ns pulse duration was obtained. This energy is the highest pulse energy reported for a directly diode-pumped Q-switched Er:YAG laser operating at 1617?nm.  相似文献   

16.
We report a high-power thin Nd:YAG slab laser with slab dimension of 1 × 10 ×60 (mm) partially edgepumped by diode laser arrays. Passive Q-switching is achieved with a Cr^4+ :YAG microchip adopted as the saturable absorber mirror. The pulse duration is around 10 ns while the pulse repetition rate is higher than 10 kHz. The average output power of 70 W is obtained with a slope efficiency of 36%. The diffraction limited beam quality in the thickness direction is obtained by controlling the pump beam diameter inside the slab. The laser head is very compact with size of only 60 × 74×150 (mm).  相似文献   

17.
Glass doped with PbS quantum dots is presented as a saturable absorber (SA) for a passive Q-switching of a diode-pumped 1.9 μm Tm:KYW laser. Output pulses with energy of 44 μJ at a repetition rate of 2.5 kHz with an average output power of 110 mW were obtained. The Q-switching conversion efficiency was 33%. The absorption saturation intensity of the glass doped with PbS quantum dots with a mean radius of 5.2 nm at a wavelength of 2 μm was measured to be 1.5 MW/cm2.  相似文献   

18.
A passively Q-switched diode pumped Yb:YAG microchip laser   总被引:3,自引:0,他引:3  
A passively Q-switched diode pumped Yb:YAG microchip laser with Cr4+:YAG saturable absorber mirror is reported. The TEMoo laser pulses are obtained with 1,7-uJ pulse energy, 15-ns pulse width, 0.11-kW peak power, and a repetition rate of 2.2 kHz at 1049 nm. The doped concentration and dimension of Yb:YAG microchip crystal are 10 at.-% and 5×0.6 mm2, respectively.  相似文献   

19.
Liu  J.  Ozygus  B.  Erhard  J.  Ding  A.  Weber  H.  Meng  X. 《Optical and Quantum Electronics》2003,35(8):811-824
A diode-pumped 1.34 m Nd:GdVO4 laser operating in cw and active Q-switching modes has been demonstrated. 4.15 W of cw output power was obtained at the highest attainable pump power of 12.3 W, resulting in an optical conversion efficiency of 33.7%, the slope efficiency was determined to be 37.6%. In Q-switching operation, a maximum average output power of 2.7 W was generated at pulse repetition frequency (PRF) of 50 kHz, with an optical conversion efficiency of 22% and a slope efficiency of 29.2%. The laser pulses with shortest duration, highest energy and peak power were achieved at PRF of 10 kHz, the parameters being 15 ns, 160 J, and 10.7 kW, respectively. By intracavity frequency-doubling with a type II phased-matched KTP crystal, 0.62 W average power at 0.67 m was produced at a PRF of 15 kHz, the resulting pulse energy, peak power, and pulse width being 41.3 J, 2.2 kW, and 19 ns, respectively. A group of analytical formulae, based on rate equations, are presented to evaluate the operational parameters of an actively Q-switched laser. Calculated results were found to be in close consistency with the experimental data.  相似文献   

20.
In this letter, a diode-pumped continuous-wave and passively Q-switched 1.06 μm laser with a novel composite YVO4/Nd:GdVO4 crystal was demonstrated for the first time. Theoretical calculations showed that the temperature distribution in YVO4/Nd:GdVO4 crystal was lower than that in GdVO4/Nd:GdVO4 and Nd:GdVO4 crystals under the same conditions. After optimizing the mode matching degree, a CW output power of 5.6 W of YVO4/Nd:GdVO4 laser was obtained at the incident pump power of 12 W when the output coupler with transmission of 30% was employed. Using Cr4 +:YAG crystals with initial transmission (T0) of 80% and 90% as saturable absorbers, the pulsed YVO4/Nd:GdVO4 laser characteristics were investigated. At the incident pump power of 12 W, the maximum average output power of 2.76 W and the maximum repetition rate of 189 kHz was achieved when T0 = 90% Cr4 +:YAG was used. The shortest pulse width was 28.1 ns when the initial transmission of the used Cr4 +:YAG was 80%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号