首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The optical method presented here is based on Wollaston prism differential interferometry using a white light source. It yields high-speed, instantaneous interferograms which directly display the isochoric lines of an unsteady, two-dimensional flow. The setup used is equivalent to conventional reference beam interferometric systems, but remains differential since one of the beams — the reference one — lies inside the undisturbed upstream flow. The method was used to obtain an instantaneous, high speed display of the unsteady flow around a cylinder spanning the test section.List of symbols d Cylinder diameter - t Time - t Interval of time between two consecutive interferograms - M Mach number - Density - P Pressure - P Pressure fluctuation - Angle of the prisms making up the birefringent system - Birefringent angle = () - gl Wavelength - n 0 Ordinary index of the crystal - n e Extraordinary index of the crystal - D Diameter of the spherical mirror - R Radius of the curvature of the spherical mirror - i Fringe width - 2g prism thickness - X Distance between the two beams interfering at the level of the spherical mirror The quantities relating to upstream conditions are indexed   相似文献   

2.
Summary In this paper we have studied the flow of a micropolar fluid, whose constitutive equations were given byEringen, in two dimensional plane flow. In two notes, we have discussed the validity of the boundary conditionv=a and its effect on the entire flow field. We have restricted our study to the case whenStokes' approximation is valid, i. e.slow motion for it is difficult to uncouple the equations in the most general case.
Zusammenfassung Gegenstand dieser Untersuchung ist die zweidimensionale ebene Strömung einer mikropolaren Flüssigkeit, deren rheologische Stoffgleichung vonEringen angegeben worden ist. In zwei Abschnitten werden die Gültigkeit der Randbedingungv=a und die daraus resultierenden Konsequenzen für das gesamte Strömungsfeld diskutiert. Wir haben unsere Untersuchung auf den Anwendungsbereich der Stokesschen Näherung (d. h. auf eine schleichende Strömung) beschränkt, da die Entkoppelung der Gleichungen im allgemeinsten Fall Schwierigkeiten bereitet.
  相似文献   

3.
An integral method of analyzing turbulent flow behind plane and axisymmetric steps is proposed, which will permit calculation of the pressure distribution, the displacement thickness, the momentum-loss thickness, and the friction in the zone of boundary layer interaction with an external ideal flow. The characteristics of an incompressible turbulent equilibrium boundary layer are used to analyze the flow behind the step, and the parameters of the compressible boundary layer flow are connected with the parameters of the incompressible boundary layer flow by using the Cowles-Crocco transformation.A large number of theoretical and experimental papers devoted to this topic can be mentioned. Let us consider just two [1, 2], which are similar to the method proposed herein, wherein the parameter distribution of the flow of a plane nearby turbulent wake is analyzed. The flow behind the body in these papers is separated into a zone of isobaric flow and a zone of boundary layer interaction with an external ideal flow. The jet boundary layer in the interaction zone is analyzed by the method of integral relations.The flow behind plane and axisymmetric steps is analyzed on the basis of a scheme of boundary layer interaction with an external ideal supersonic stream. The results of the analysis by the method proposed are compared with known experimental data.Notation x, y longitudinal and transverse coordinates - X, Y transformed longitudinal and transverse coordinates - , *, ** boundary layer thickness, displacement thickness, momentum-loss thickness of a boundary layer - , *, ** layer thickness, displacement thickness, momentum-loss thickness of an incompressible boundary layer - u, velocity and density of a compressible boundary layer - U, velocity and density of the incompressible boundary layer - , stream function of the compressible and incompressible boundary layers - , dynamic coefficient of viscosity of the compressible and incompressible boundary layers - r1 radius of the base part of an axisymmetric body - r radius - R transformed radius - M Mach number - friction stress - p pressure - a speed of sound - s enthalpy - v Prandtl-Mayer angle - P Prandtl number - Pt turbulent Prandtl number - r2 radius of the base sting - b step depth - =0 for plane flow - =1 for axisymmetric flow Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 33–40, May–June, 1971.In conclusion, the authors are grateful to M. Ya. Yudelovich and E. N. Bondarev for useful comments and discussions.  相似文献   

4.
A cold gas is injected from a slot into a free stream of hot gas. In a simple model this leads to a two-fluid free boundary problem with the jump relation |u-|2–|u+|2 = ( constant) on the free boundary {u=0}, where u is the stream function. We prove that for any (–1, ) there exists a unique solution (Q, u) where Q is the flux of the injected fluid. Various properties of the solution u and of the free boundary are established.  相似文献   

5.
An analysis is given of the laminar boundary layer over a permeable/porous wall. The porous wall is passive in the sense that no suction or blowing velocity is imposed. To describe the flow inside and above the porous wall a continuum approach is employed based on the Volume-Averaging Method (S. Whitaker The method of volume averaging). With help of an order-of-magnitude analysis the boundary-layer equations are derived. The analysis is constrained by: (a) a low wall permeability; (b) a low Reynolds number for the flow inside the porous wall; (c) a sufficiently high Reynolds number for the freestream flow above the porous wall. Two boundary layers lying on top of each other can be distinguished: the Prandtl boundary layer above the porous wall, and the Brinkman boundary layer inside the porous wall. Based on the analytical solution for the Brinkman boundary layer in combination with the momentum transfer model of Ochoa-Tapia and Whitaker (Int. J. Heat Mass Transfer 38 (1995) 2635). for the interface region, a closed set of equations is derived for the Prandtl boundary layer. For the stream function a power series expansion in the perturbation parameter is adopted, where is proportional to ratio of the Brinkman to the Prandtl boundary-layer thickness. A generalization of the Falkner–Skan equation for boundary-layer flow past a wedge is derived, in which wall permeability is incorporated. Numerical solutions of the Falkner–Skan equation for various wedge angles are presented. Up to the first order in wall permeability causes a positive streamwise velocity at the interface and inside the porous wall, but a wall-normal interface velocity is a second-order effect. Furthermore, wall permeability causes a decrease in the wall shear stress when the freestream flow accelerates, but an increase in the wall shear stress when the freestream flow decelerates. From the latter it follows that separation, as indicated by zero wall shear stress, is delayed to a larger positive pressure gradient.  相似文献   

6.
The interaction between a boundary layer and a supersonic flow past a plate with a flap deflected at a small angle in the presence of strong cooling of the body surface is considered. For supercritical regimes, the entire interaction region is located behind the leading edge of the flap and the pressure distribution has a discontinuity of the derivative near the corner point. The flow in a break-point neighborhood with a characteristic length x of the order of the boundary layer thickness is studied. It is shown that in this region a substantial pressure difference arises. The pressure distribution along the surface is found. The viscous sublayer in this region develops under the action of the given pressure gradient.  相似文献   

7.
F. Ebert 《Rheologica Acta》1973,12(2):160-164
Summary The micropolar fluid defined by the constitutive equations ofEringen (3, 4) is to be considered. This fluid is characterized by describing the motion of the fluid elements by two kinematic fields: The velocity field and the spin field. The corresponding equations of motion are specialized for boundary layer flow. A similar solution can be given for flow near stagnation as outer flow.Concerning the flow properties of the polar fluid two parameters are of main interest: First, the ratio of boundary layer thickness to characteristic length scale of the fluid elements; secondly, a parameter describing the coupling between velocity and spinfield. The solution is discussed comparing the behaviour of the micropolar fluid to that of aNewtonian liquid.
Zusammenfassung Für die mikropolare Flüssigkeit nachEringen (3, 4) werden die Grenzschichtgleichungen abgeleitet. Diese Flüssigkeit ist dadurch gekennzeichnet, daß die Bewegung ihrer Elemente durch zwei kinematische Felder gegeben ist, das Geschwindigkeits- und das Spinfeld. Für die Staupunktsströmung als Außenströmung kann man eine Ähnlichkeitslösung der Grenzschichtgleichungen angeben. Für das Strömungsverhalten der polaren Flüssigkeit erweisen sich zwei Parameter als wesentlich: Das Verhältnis von Grenzschichtdicke zu charakteristischer Abmessung des Fluidelements sowie ein Parameter, der die Kopplung zwischen Geschwindigkeitsfeld und Spinfeld wiedergibt. Die Lösung der Grenzschichtgleichungen wird diskutiert, wobei die Strömungseigenschaften von polarer undNewtonscher Flüssigkeit einander gegenübergestellt werden.


Avec 3 figures  相似文献   

8.
We consider the motion of a generalized Newtonian fluid, where the extra stress tensor is induced by a potential with p-structure (p = 2 corresponds to the Newtonian case). We focus on the three dimensional case with periodic boundary conditions and extend the existence result for strong solutions for small times from \tfrac{5}{3}$$ " align="middle" border="0"> (see [16]) to \tfrac{7}{5}.$$ " align="middle" border="0"> Moreover, for we improve the regularity of the velocity field and show that for all 0.$$ " align="middle" border="0"> Within this class of regularity, we prove uniqueness for all \tfrac{7}{5}.$$ " align="middle" border="0"> We generalize these results to the case when p is space and time dependent and to the system governing the flow of electrorheological fluids as long as   相似文献   

9.
The stability of the laminar flow regime in the boundary layer developed on a wall is increased considerably by the relatively slight extraction of fluid from the wall [1–4]. In the theoretical study of this phenomenon, all the investigators known to the present authors have taken into account only the increase in the fullness of the velocity profile in the boundary layer with suction. Computations of the stability characteristics have been made on the assumption that there are no transverse velocities in the laminar boundary layer.We present below an analysis of the stability of the laminar boundary layer in the presence of a constant transverse velocity in the near-wall region (suction). The calculations made show the existence for a given velocity profile in the boundary layer of a relative suction velocity v=v such that with suction velocities greater than v the flow remains stable at all Reynolds numbers, while the method used in the cited references gives a definite finite critical Reynolds number, equal in our notation to the Reynolds number at v=0, for each relative suction velocity.It was found that with suction of fluid from the boundary layer the region of instability has finite dimensions, i.e., there exist lower and upper critical Reynolds numbers. The flow is stable if its Reynolds number is less than the lower, or greater than the upper values of the critical Reynolds number.The instability region diminishes with increase in the relative suction velocity, and at a value of this velocity which is specific for each value of the velocity profile the instability region degenerates into a point-the flow becomes absolutely stable. Thus, with distributed suction it is advisable to increase the relative suction velocity only to a definite magnitude corresponding to disappearance of the instability region. The computational results presented make it possible to estimate this velocity for velocity profiles ranging from a Blasius profile to an asymptotic profile. Specific calculations were made for a family of Wuest profiles, since under actual conditions with suction there always exists a starting segment of the boundary layer [1, 2].  相似文献   

10.
The problem of local simulation of stagnation point heat transfer to a blunt body is solved within the framework of boundary layer theory on the assumption that the simulation subsonic high-enthalpy flow is in equilibrium outside the boundary layer on the model, while the parameters of the natural flow are in equilibrium at the outer edge of the boundary layer on the body. The parameters of the simulating subsonic flow are expressed in terms of the total enthalpyH 0, the stagnation point pressurep w and the velocityV 1 for the natural free-stream flow in the form of universal functions of the dimensionless modeling coefficients=R m * /R b * ( .<1),=V 1/2H 0 ( .<1) whereR m * and R b * are the effective radii of the model and the body at their stagnation points. Approximate conditions for modeling the heat transfer from a high-enthalpy (including hypersonic) flow to the stagnation point on a blunt body by means of hyposonic (M1) flows, corresponding to the case 21, are obtained. The possibilities of complete local simulation of hypersonic nonequilibrium heat transfer to the stagnation point on a blunt body in the hyposonic dissociated air jets of a VGU-2 100-kilowatt induction plasma generator [4, 5] are analyzed.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.1, pp. 172–180, January–February, 1993.  相似文献   

11.
A method is presented for calculating the distribution of the thermal fluxes, friction stresses, and pressure near the corner point of a body contour in whose vicinity the outer supersonic flow passes through an expansion wave. The method is based on a study of the asymptotic solutions of the Navier-Stokes equations as the Reynolds number R approaches infinity for the flow region in which the longitudinal gradients of the flow functions are large, invalidating conventional boundary layer theory. This problem was examined in part in [1], in which the distribution of the friction and pressure in a region with length on the order of a few thicknesses of the approaching boundary layer was obtained in the first approximation. The leading term of the expansion for the thermal flux to the surface of the body vanishes for a value of the Prandtl number equal to unity and for other values of the Prandtl number does not match directly with its value in the undisturbed boundary layer.The thermal-flux distribution is obtained for values of the Prandtl number approaching unity. For this purpose it was necessary to consider a more general double passage to the limit as 1 and 0 for a finite value of the parameter B=[(–1)/] [–ln 1/4/]1/4 characterizing the ratio of the effects of thermal conduction, viscous dissipation, and convection. The solution obtained previously [1] corresponds to the particular case B and therefore for actual values of R=104–106, ~ 0.7 overestimates considerably the effect of the dissipative term on heat transfer, although even in first approximation it describes the pressure distribution well and the friction distribution satisfactorily. For smooth matching of the solutions with the corresponding flow functions in the undisturbed boundary layer it was necessary to introduce a flow region with free interaction for the expansion flow. Equations and boundary conditions which describe the flow as a whole are presented. Examples are given of numerical calculations and comparison with experiment.  相似文献   

12.
The classical two-dimensional compressible boundary-layer equations supplemented by a relation describing the interaction of boundary layer with external inviscid flow (see, e.g., [1]) are treated as the governing equations in one of the methods to study the viscous-inviscid interaction. It is then necessary in the case of supersonic flow to specify certain downstream boundary conditions for the closure of the governing system, i.e., it is a boundary-value problem (e.g., [2]). The shooting technique for parameters at the beginning of the computational region to obtain the solution satisfying such a condition usually requires large computer time since the integral curves are highly sensitive to small changes in upstream boundary conditions. A more effective method is the algorithm of global relaxations of pressure distribution along the entire computational region [1]. A numerical method to compute supersonic interacting boundary layer in the presence of separation is presented in this paper.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 89–93, January–February, 1984.  相似文献   

13.
We consider the Cauchy problem , x(0) = 0, where a 000 = 0, a 001 = 0, and a 002 = 0, and prove the existence of continuously differentiable solutions x(0,] with required asymptotic properties.  相似文献   

14.
The article describes a method for calculating the flow of heat through a wavy boundary separating a layer of liquid from a layer of gas, under the assumption that the viscosity and heat-transfer coefficients are constant, and that a constant temperature of the fixed wall and a constant temperature of the gas flow are given. A study is made of the equations of motion and thermal conductivity (without taking the dissipation energy into account) in the approximations of the theory of the boundary layer; the left-hand sides of these equations are replaced by their averaged values over the layer. These equations, after linearization, are used to determine the velocity and temperature distributions. The qualitative aspect of heat transfer in a thin layer of viscous liquid, under regular-wavy flow conditions, is examined. Particular attention is paid to the effect of the surface tension coefficient on the flow of heat through the interface.Notation x, y coordinates of a liquid particle - t time - v and u coordinates of the velocity vector of the liquid - p pressure in the liquid - cv, , T,, andv heat capacity, thermal conductivity coefficient, temperature, density, and viscosity of the liquid, respectively - g acceleration due to gravity - surface-tension coefficient - c phase velocity of the waves at the interface - Tw wall temperature - h0 thickness of the liquid layer - u0 velocity of the liquid over the layer Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 147–151, July–August, 1970.  相似文献   

15.
A self-similar solution of the Navier-Stokes equations describing steady-state axisymmetric viscous incompressible fluid flow in a half-space is investigated. The motion is induced by sources or sinks distributed over a vertical axis with a constant density. The horizontal plane bounding the fluid is a free surface. It is found that in the presence of sources a solution of the above type exists and is unique for any value of the Reynolds numberR > 0, but in the case of sinks only on the interval –2 R < 0. The results of calculating the self-similar solutions are presented. The asymptotics of the solutions are found asR 0 andR .Novosibirsk. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 53–65, March–April, 1996.  相似文献   

16.
We propose a new method for the solution of stochastic unsaturated flow problems in randomly heterogeneous soils which avoids linearizing the governing flow equations or the soil constitutive relations, and places no theoretical limit on the variance of constitutive parameters. The proposed method applies to a broad class of soils with flow properties that scale according to a linearly separable model provided the dimensionless pressure head has a near-Gaussian distribution. Upon treating as a multivariate Gaussian function, we obtain a closed system of coupled nonlinear differential equations for the first and second moments of pressure head. We apply this Gaussian closure to steady-state unsaturated flow through a randomly stratified soil with hydraulic conductivity that varies exponentially with where =(1/) is dimensional pressure head and is a random field with given statistical properties. In one-dimensional media, we obtain good agreement between Gaussian closure and Monte Carlo results for the mean and variance of over a wide range of parameters provided that the spatial variability of is small. We then provide an outline of how the technique can be extended to two- and three-dimensional flow domains. Our solution provides considerable insight into the analytical behavior of the stochastic flow problem.  相似文献   

17.
A local study is made of the flow region and the charge-free region for an axisymmetric regular beam (the normal component of the magnetic field is zero at the emitter). The study is made within the context of hydrodynamic theory. The equation of the beam boundary and the beam potential and normal derivative on it are determined. A solution is obtained for Laplace's equation in the neighborhood of the emitter surface and the equation of the zero-potential shaping electrode is derived. The cases of space-charged-limited (-mode), temperature (T-mode), and nonzero-initial-velocity emission are investigated. The emitting surface and the Cauchy conditions on it are assumed to be defined by analytic functions. A similar problem was solved in [1] for emission in the p-mode and zero magnetic field. The results of [2–4] are utilized. Note that [5] also dealt with solution of the beam equations in the neighborhood of a curved emitter.  相似文献   

18.
Analytical solutions for the plane Couette flow and the plane Poiseuille flow of the one-mode Giesekus fluid without any retardation time have been obtained by considering the domain of definition for each of the two branch solutions which arise due to the presence of the quadratic stress terms in the constitutive equations. For each fixed value of the mobility parametera, the limiting value of the Weissenberg number for the upper branch solution, i.e., the physically realistic solution is determined in terms of the corresponding dimensionless shear stress for the plane Couette flow and in terms of the corresponding dimensionless pressure gradient for the plane Poiseuille flow. In the case of the plane Couette flow, it is shown that fora falling in the range 0a1/2 only the physically realistic solution exists while for 1/2<a 1 a nonphysical solution coexists with the realistic one. In the case of the plane Poiseuille flow, it is shown that the non-physical solution cannot even exist around the center plane of the channel, and the effects of the mobility parameter and the dimensionless pressure gradient on the flow variables are investigated. Possible extensions of the present approach to other steady simple shear flows with and without the introduction of the retardation time are also discussed.  相似文献   

19.
In a supersonic stream we consider the three-dimensional flow in the plane of symmetry in the region of interaction of a boundary layer with a shock wave which arises ahead of an obstacle mounted on a plate. The principal characteristic of this flow is the penetration of a filament of the ideal fluid within the separation zone and the formation on the surface of the plate and obstacle of narrow segments with high pressures, high velocity gradients, and large heat transfer coefficients.Pressure distribution measurements were made, shadow and schlieren photos were taken, and photographs of the flow pattern on the surface were made using dye coatings and low-melting models. The basic physical characteristics of the separation flow are established. The independence of the separation zone length of the boundary layer thickness is shown. Local supersonic flows are detected in the separation region, flow regimes are identified as a function of the angle of encounter of the separating flow with the obstacles, characteristic flow zones in the interaction region are identified.Notation s coordinate of separation point on the plate - l length of separation zone - H obstacle height - d obstacle transverse dimension - u freestream velocity - velocity gradient on stagnation line of obstacle - b jet width - compression shock standoff from the body - p static pressure - p* pressure at stagnation point on obstacle - density - viscosity coefficient - boundary-layer thickness - compression shock angle - effective angle of separation zone - setting angle of obstacle on plate - M Mach number - R Reynolds number - P Prandtl number  相似文献   

20.
Local energy decay is established for the solutions of the neutrino equation in the exterior G of a torus for a class of boundary conditions, described as follows: To each energy conserving boundary condition at a point x on G there corresponds a vector in the tangent plane to G at x. The result has been proved when the torus and boundary conditions are axially symmetric and when the paths generated by this vector field are closed. What is novel about this problem is the fact that the boundary conditions are nowhere coercive.This research was sponsored in part by the National Science Foundation under Grants GP 8857 and GP-17526, and by the United State Air Force under contract F 44620-68-C-0054.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号