首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Solutions of K[Au(CN)(2)] and K[Ag(CN)(2)] in water and methanol exhibit strong photoluminescence. Aqueous solutions of K[Au(CN)(2)] at ambient temperature exhibit luminescence at concentration levels of > or =10(-2) M, while frozen methanol glasses (77 K) exhibit strong luminescence with concentrations as low as 10(-5) M. The corresponding concentration limits for K[Ag(CN)(2)] solutions are 10(-1) M at ambient temperature and 10(-4) M at 77 K. Systematic variations in concentration, solvent, temperature, and excitation wavelength tune the luminescence energy of both K[Au(CN)(2)] and K[Ag(CN)(2)] solutions by >15 x 10(3) cm(-1) in the UV-visible region. The luminescence bands have been individually assigned to *[Au(CN)(2)(-)](n) and *[Ag(CN)(2)(-)](n) excimers and exciplexes that differ in "n" and geometry. The luminescence of Au(I) compounds is related for the first time to Au-Au bonded excimers and exciplexes similar to those reported earlier for Ag(I) compounds. Fully optimized unrestricted open-shell MP2 calculations for the lowest-energy triplet excited state of staggered [Au(CN)(2)(-)](2) show the formation of a Au-Au sigma single bond (2.66 A) in the triplet excimer, compared to a weaker ground-state aurophilic bond (2.96 A). The corresponding frequency calculations revealed Au-Au Raman-active stretching frequencies at 89.8 and 165.7 cm(-1) associated with the ground state and lowest triplet excited state, respectively. The experimental evidence of the exciplex assignment includes the extremely large Stokes shifts and the structureless feature of the luminescence bands, which suggest very distorted excited states. Extended Hückel (EH) calculations for [M(CN)(2)(-)](n) and *[M(CN)(2)(-)](n) models (M = Au, Ag; n = 2, 3) indicate the formation of M-M bonds in the first excited electronic states. From the average EH values for staggered dimers and trimers, the excited-state Au-Au and Ag-Ag bond energies are predicted to be 104 and 112 kJ/mol, respectively. The corresponding bond energies in the ground state are 32 and 25 kJ/mol, respectively.  相似文献   

2.
The excited-state properties of the layered La[Ag(CN)(2)](3) and La[Au(CN)(2)](3) systems have been examined and compared with mixed-metal systems of varying metal ratios such as La[Ag(0.78)Au(0.22)(CN)(2)](3), La[Ag(0.55)Au(0.45)(CN)(2)](3), La[Ag(0.33)Au(0.67)(CN)(2)](3), and La[Ag(0.19)Au(0.81)(CN)(2)](3). We have found that these mixed-metal systems luminesce quite strongly at room temperature at an energy that is tunable and depends on the Au:Ag stoichiometric ratio. The emission energy of the mixed-metal samples lies between those of the pure Au and Ag systems. This provides evidence that the excited states responsible for this emission are delocalized over the Ag and Au centers. The strong luminescence of the mixed-metal systems at ambient temperatures is in stark contrast to the weak luminescence behavior of pure La[Au(CN)(2)](3) and La[Ag(CN)(2)](3) samples, which makes the mixed-metal systems more viable than the pure systems for practical applications.  相似文献   

3.
A series of new heterometallic coordination polymers has been prepared from the reaction of metal-ligand cations and KAg(CN)(2) units. Many of these contain silver-silver (argentophilic) interactions, analogous to gold-gold interactions, which serve to increase supramolecular structural dimensionality. Compared to [Au(CN)(2)](-) analogues, these polymers display new trends specific to [Ag(CN)(2)](-), including the formation of [Ag(2)(CN)(3)](-) and the presence of Ag...N interactions. [Cu(en)(2)][Ag(2)(CN)(3)][Ag(CN)(2)] (1, en = ethylenediamine) forms 1-D chains of alternating [Ag(CN)(2)](-) and [Ag(2)(CN)(3)](-) units via argentophilic interactions of 3.102(1) A. These chains are connected into a 2-D array by strong cyano(N)-Ag interactions of 2.572(3) A. [Cu(dien)Ag(CN)(2)](2)[Ag(2)(CN)(3)][Ag(CN)(2)] (2, dien = diethylenetriamine) forms a 1-D chain of alternating [Cu(dien)](2+) and [Ag(CN)(2)](-) ions with the Cu(II) atoms connected in an apical/equatorial fashion. These chains are cross-linked by [Ag(2)(CN)(3)](-) units via argentophilic interactions of 3.1718(8) A and held weakly in a 3-D array by argentophilic interactions of 3.2889(5) A between the [Ag(CN)(2)](-) in the 2-D array and the remaining free [Ag(CN)(2)](-). [Ni(en)][Ni(CN)(4)].2.5H(2)O (4) was identified as a byproduct in the reaction to prepare the previously reported [Ni(en)(2)Ag(2)(CN)(3)][Ag(CN)(2)] (3). In [Ni(tren)Ag(CN)(2)][Ag(CN)(2)] (5, tren = tris(2-aminoethyl)amine), [Ni(tren)](2+) cations are linked in a cis fashion by [Ag(CN)(2)](-) anions to form a 1-D chain similar to the [Au(CN)(2)](-) analogue. [Cu(en)Cu(CN)(2)Ag(CN)(2)] (6) is a trimetallic polymer consisting of interpenetrating (6,3) nets stabilized by d(10)-d(10) interactions between Cu(I)-Ag(I) (3.1000(4) A). Weak antiferromagnetic coupling has been observed in 2, and a slightly stronger exchange has been observed in 6. The Ni(II) complexes, 4 and 5, display weak antiferromagnetic interactions as indicated by their relatively larger D values compared to that of 3. Magnetic measurements on isostructural [Ni(tren)M(CN)(2)][M(CN)(2)] (M = Ag, Au) show that Ag(I) is a more efficient mediator of magnetic exchange as compared to Au(I). The formation of [Ni(CN)(4)](2)(-), [Ag(2)(CN)(3)](-), and [Cu(CN)(2)](-) are all attributed to secondary reactions of the dissociation products of the labile KAg(CN)(2).  相似文献   

4.
The generation of metal cyanide ions in the gas phase by laser ablation of M(CN)(2) (M = Co, Ni, Zn, Cd, Hg), Fe(III)[Fe(III)(CN)(6)] x xH(2)O, Ag(3)[M(CN)(6)] (M = Fe, Co), and Ag(2)[Fe(CN)(5)(NO)] has been investigated using Fourier transform ion cyclotron resonance mass spectrometry. Irradiation of Zn(CN)(2) and Cd(CN)(2) produced extensive series of anions, [Zn(n)(CN)(2n+1)](-) (1 < or = n < or = 27) and [Cd(n)(CN)(2n+1)](-) (n = 1, 2, 8-27, and possibly 29, 30). Cations Hg(CN)(+) and [Hg(2)(CN)(x)](+) (x = 1-3), and anions [Hg(CN)(x)](-) (x = 2, 3), are produced from Hg(CN)(2). Irradiation of Fe(III)[Fe(III)(CN)(6)] x xH(2)O gives the anions [Fe(CN)(2)](-), [Fe(CN)(3)](-), [Fe(2)(CN)(3)](-), [Fe(2)(CN)(4)](-), and [Fe(2)(CN)(5)](-). When Ag(3)[Fe(CN)(6)] is ablated, [AgFe(CN)(4)](-) and [Ag(2)Fe(CN)(5)](-) are observed together with homoleptic anions of Fe and Ag. The additional heterometallic complexes [AgFe(2)(CN)(6)](-), [AgFe(3)(CN)(8)](-), [Ag(2)Fe(2)(CN)(7)](-), and [Ag(3)Fe(CN)(6)](-) are observed on ablation of Ag(2)[Fe(CN)(5)(NO)]. Homoleptic anions [Co(n)(CN)(n+1)](-) (n = 1-3), [Co(n)(CN)(n+2)](-) (n = 1-3), [Co(2)(CN)(4)](-), and [Co(3)(CN)(5)](-) are formed when anhydrous Co(CN)(2) is the target. Ablation of Ag(3)[Co(CN)(6)] yields cations [Ag(n)(CN)(n-1)](+) (n = 1-4) and [Ag(n)Co(CN)(n)](+) (n = 1, 2) and anions [Ag(n)(CN)(n+1)](-) (n = 1-3), [Co(n)(CN)(n-1)](-) (n = 1, 2), [Ag(n)Co(CN)(n+2)](-) (n = 1, 2), and [Ag(n)Co(CN)(n+3)](-) (n = 0-2). The Ni(I) species [Ni(n)(CN)(n-1)](+) (n = 1-4) and [Ni(n)(CN)(n+1)](-) (n = 1-3) are produced when anhydrous Ni(CN)(2) is irradiated. In all cases, CN(-) and polyatomic carbon nitride ions C(x)N(y)(-) are formed concurrently. On the basis of density functional calculations, probable structures are proposed for most of the newly observed species. General structural features are low coordination numbers, regular trigonal coordination stereochemistry for d(10) metals but distorted trigonal stereochemistry for transition metals, the occurrence of M-CN-M and M(-CN-)(2)M bridges, addition of AgCN to terminal CN ligands, and the occurrence of high spin ground states for linear [M(n)(CN)(n+1)](-) complexes of Co and Ni.  相似文献   

5.
The salts [Pt{C(NHMe)(2)}(4)][Au(CN)(2)](2), [Pt{C(NHMe)(2)}(4)][Ag(2)(CN)(3)][Ag(CN)(2)], [Pt(en)(2)][Au(CN)(2)](2), [Pt(en)(2)][Ag(CN)(2)](2), and [Pt(bipy)(2)][Au(CN)(2)](2) have been prepared by mixing solutions of salts containing the appropriate cation with solutions of K[Au(CN)(2)] or K[Ag(CN)(2)]. Because the platinum atom in the cation is sterically protected, the structures of [Pt{C(NHMe)(2)}(4)][Au(CN)(2)](2) and [Pt{C(NHMe)(2)}(4)][Ag(2)(CN)(3)][Ag(CN)(2)] reveal no close metal-metal interactions. Colorless crystals of [Pt(en)(2)][Au(CN)(2)](2) and [Pt(en)(2)][Ag(CN)(2)](2) are isostructural and involve extended chains of alternating cations and anions that run parallel to the crystallographic a axis, along with isolated anions. In the chains, the metal-metal separations are relatively short: Pt...Au, 3.1799(3) Angstroms; Pt...Ag, 3.1949(2) Angstroms. In [Pt(bipy)(2)][Au(CN)(2)](2), each cation has axial interactions with the anions through close Pt...Au contacts [3.1735(6) Angstroms]. In addition, the anions are weakly linked through Au...Au contacts of 3.5978(9) Angstroms. Unlike the previously reported Pt/Au complex [Pt(NH(3))(4)][Au(CN)(2)](2).1.5H(2)O, which is luminescent, none of the salts reported here luminesce.  相似文献   

6.
Molecular structures and excited states of CpM(CO)(2) (Cp = eta(5)-C(5)H(5); M = Rh, Ir) and [Cl(2)Rh(CO)(2)](-) complexes have been investigated using the B3LYP and the symmetry-adapted cluster (SAC)/SAC-configuration interaction (SAC-CI) theoretical methods. All the dicarbonyl complexes have singlet ground electronic states with large singlet-triplet separations. Thermal dissociations of CO from the parent dicarbonyls are energetically unfavorable. CO thermal dissociation is an activation process for [Cl(2)Rh(CO)(2)](-) while it is a repulsive potential for CpM(CO)(2). The natures of the main excited states of CpM(CO)(2) and [Cl(2)Rh(CO)(2)](-) are found to be quite different. For [Cl(2)Rh(CO)(2)](-), all the strong transitions are identified to be metal to ligand CO charge transfer (MLCT) excitations. A significant feature of the excited states of CpM(CO)(2) is that both MLCT excitation and a ligand Cp to metal and CO charge transfer excitation are strongly mixed in the higher energy states with the latter having the largest oscillator strength. A competitive charge transfer excited state has therefore been identified theoretically for CpRh(CO)(2) and CpIr(CO)(2). The wavelength dependence of the quantum efficiencies for the photoreactions of CpM(CO)(2) reported by Lees et al. can be explained by the existence of two different types of excited states. The origin of the low quantum efficiencies for the C-H/S-H bond activations of CpM(CO)(2) can be attributed to the smaller proportion of the MLCT excitation in the higher energy states.  相似文献   

7.
The highly luminescent bimetallic cyanide materials, Gd(terpy)(H(2)O)(NO(3))(2)M(CN)(2) (M = Au, Ag; GdAu and GdAg, respectively) are quick and easy to synthesize under ambient conditions. A characteristic feature exhibited by both solid-state compounds is an intense red emission when excited with UV light. Additionally, GdAu exhibits a broad-band green emission upon excitation in the near UV region. A combination of structural and spectroscopic results for the compounds helps explain the underlying conditions responsible for their unique properties. Single-crystal X-ray diffraction experiments expose their structural features, including the fact that they are isostructural. Crystallographic data for the representative GdAu compound (Mo K(α), λ = 0.71073 ?, T = 290 K): triclinic, space group P ?1, a = 7.5707(3) ?, b = 10.0671(4) ?, c = 15.1260(4) ?, α = 74.923(3)°, β = 78.151(3)°, γ = 88.401(3)°, V = 1089.04(7) ?(3), and Z = 2. Although the compounds crystallize as dimers containing M···M distances smaller than the sum of their van der Waals radii, the Au···Au (3.5054(4) ?) and/or the Ag···Ag (3.6553(5) ?) interactions are relatively weak and are not responsible for the low energy red emission. Rather, the green emission in GdAu presumably originates from the [Au(CN)(2)(-)](2) dimeric excimer, while the [Ag(CN)(2)(-)](2) dimers in GdAg do not display visible emission at either 290 or 77 K. The unusual red emission exhibited by both compounds likely originates from the formation of an excited state exciplex that involves intermolecular π-stacking of 2,2':6',2"-terpyridine ligands. The room-temperature and low-temperature steady-state photoluminescent properties, along with detailed time-dependent, lifetime, and quantum yield spectroscopic data provide evidence regarding the sources of the multiple visible emissions exhibited by these complexes.  相似文献   

8.
A new series of lanthanide-containing dicyanoaurate coordination polymers, [(n)Bu(4)N](2)[Ln(NO(3))(4)Au(CN)(2)] (Ln = Nd, Eu, Gd or Tb), were synthesized and structurally characterized. They form an isomorphous series, crystallizing in the space group I2(1)2(1)2(1). The structure is composed of a one dimensional zigzag of Ln-N-C-Au-C-N-Ln chains with no intra- or inter-chain aurophilic interactions. The series is related to and can be described as a reduced dimensionality analogue of the previously studied Ln[Au(CN)(2)](3)·3H(2)O. Unlike the Ln[Au(CN)(2)](3)·3H(2)O series, there is no efficient energy transfer between dicyanoaurate and the lanthanide metal centers in the complexes and they essentially act as two separate emissive chromophores.  相似文献   

9.
The photomagnetic properties of two series of spin-crossover solid solutions, [Fe(1-bpp)(2)](x)[Ru(terpy)(2)](1-x)(BF(4))(2) and [Fe(1-bpp)(2)](x)[Co(terpy)(2)](1-x)(BF(4))(2) (1-bpp = 2,6-bis[pyrazol-1-yl]pyridine), have been investigated. For all the materials, the evolution of the T(LIESST) value, the high-spin → low-spin relaxation parameters and the LITH loops were thoroughly studied. Interestingly in the Fe:Co series, along the photo-excitation, cobalt ions are concomitantly converted from low-spin to high-spin states with the iron centres, and also fully relax after light excitation.  相似文献   

10.
Luminescent [(NH(3))(4)Pt][Au(CN)(2)](2).1.5(H(2)O), which forms from aqueous solutions of [(NH(3))(4)Pt]Cl(2) and K[Au(CN)(2)], crystallizes with extended chains of the two ions with multiple close Pt...Au (3.2804(4) and 3.2794(4) A) and Au...Au (3.2902(5), 3.3312(5), and 3.1902(4) A) contacts. Nonluminescent [(NH(3))(4)Pt][Ag(CN)(2)](2).1.4(H(2)O) is isostructural with [(NH(3))(4)Pt][Au(CN)(2)](2).1.5(H(2)O). Treatment of [(NH(3))(6)Ni]Cl(2) with K[Au(CN)(2)] forms [(NH(3))(2)Ni][Au(CN)(2)](2) in which the [Au(CN)(2)](-) ions function as nitrile ligands toward nickel, which assumes a six-coordinate structure with trans NH(3) ligands. The [Au(CN)(2)](-) ions self-associate into linear columns with close Au...Au contacts of 3.0830(5) A, and pairs of gold ions in these chains make additional but longer (3.4246(5) A) contacts with other gold ions.  相似文献   

11.
A series of the first coordination polymers using the [Au(CN)(4)](-) anion as a building block has been prepared. The planar tetracyanoaurate anion uses one, two, or four cyano groups to bridge to Ni(II) or Cu(II) centers and exhibits weak Au(III)-N(cyano) interactions between anions. Ni(en)(2)[Au(CN)(4)](2).H(2)O (1, en = ethylenediamine) is a molecular compound with the two [Au(CN)(4)](-) anions coordinating in a trans orientation to Ni(II) without further cyanide coordination. Cu(dien)[Au(CN)(4)](2) (2, dien = diethylenetriamine) forms a similar molecular complex; however, the dimensionality is increased through weak intermolecular Au-N(cyano) interactions of 3.002(14) A to form a 1-D zigzag chain. Cu(en)(2)[Au(CN)(4)](2) (3) also forms a molecular complex similar to 1, but with elongated axial bonds. The complex further aggregates through Au-N(cyano) interactions of 3.035(8) A to form a 2-D array. In [Cu(dmeda)(2)Au(CN)(4)][Au(CN)(4)] (4, dmeda = N,N-dimethylethylenediamine) one [Au(CN)(4)](-) anion coordinates via two cis-N(cyano) donors to the axial sites of two Cu(II) centers to form a 1-D zigzag chain of alternating [Cu(dmeda)(2)](2+) and [Au(CN)(2)](-) units; the other [Au(CN)(4)](-) anion forms a 1-D chain via Au-N(cyano) interactions. In [Cu(bipy)(H(2)O)(2)(Au(CN)(4))(0.5)][Au(CN)(4)](1.5) (5, bipy = 2,2'-bipyridine) one [Au(CN)(4)](-) anion uses all four cyano moieties to bridge four different Cu(II) centers, creating a 1-D chain.  相似文献   

12.
Polymeric transition metal chalcogenides have attracted much attention because of their possible unusual properties directly derived from their extended structures. The molecules n-cyanopyridine (n = 2, 3, and 4) and pyridine-3,4-dicarbonitrile are found to function as bidentate or monodentate (only pyridine nitrogen donor atom) ligands in the coordination of silver(I) and copper(I) ions, respectively. The mode of coordination depends on the anion and the crystallization conditions and has been elucidated in all cases by single-crystal X-ray crystallography. We report here the syntheses, structural characterization, and electrical properties of six new polymers, [Ag(2)(2-cyanopyridine)(2)(NO(3))(2)](n)(1), [Ag(4)(3-cyanopyridine)(8)(SiF(6))(2)(H(2)O)(2)](n) (2), [Ag(3-cyanopyridine)(2)(NO(3))](n)(3), [Ag(pyridine-3,4-dicarbonitrile)(2)(NO(3))](n)(4), [Cu(I)(4-cyanopyridine)(2)(SCN)](n)(5), and [Cu(I)(pyridine-3,4-dicarbonitrile)(2)(SCN)](n)(6). Compounds 1 and 2 exhibit novel two-dimensional networks, while 3-6 have one-dimensional chain structures, in which 3 is a single-stranded helix. Room-temperature conductivities of 1, 2, 4, and 6 have been measured and are 3.1 x 10(-)(7), 2.7 x 10(-)(7), 7.4 x 10(-)(6), and 4.3 x 10(-)(5) S.cm(-)(1), respectively. The effect of temperature on the conductivities has been investigated.  相似文献   

13.
Four new [AuBr(2)(CN)(2)](-)-based coordination polymers, Zn(pyz)(NCMe)(2)[AuBr(2)(CN)(2)](2) (1; pyz = pyrazine), Co(pyz)[AuBr(2)(CN)(2)](2)·H(2)O (2) and [M(bipy)(2)(AuBr(2)(CN)(2))][(n)Bu(4)N][AuBr(2)(CN)(2)](2) (bipy = 4,4'-bipyridine), where M = Co (5) and Zn (6), were synthesized and three of them structurally characterized. 1 forms 1-D chains connected by pyz ligands while isostructural 5 and 6 form 3-D frameworks via [AuBr(2)(CN)(2)](-) and bipy linkers. Aqueous suspensions of 2, 5 and 6 or their precursors in situ (preferred) were heated hydrothermally to 125 °C, triggering the reductive elimination of bromine from the Au(III) centres, which yielded the [Au(CN)(2)](-)-based coordination polymers M(pyz)[Au(CN)(2)](2), where M = Zn (3) or Co (4) and Zn(bipy)[Au(CN)(2)][Au{Br(0.68)(CN)(0.32)}CN] (7), or a mixture of cyanoaurate(I)-containing products in the case of 5 and 6. The structural characterization of 3 revealed a [Au(CN)(2)](-)/pyz-based framework similar to previously reported Cu(pyz)[Au(CN)(2)](2), whereas 7 formed an intricate network consisting of individual 2-D networks held together by AuAu interactions and featuring the rare [AuBrCN](-) unit. The kinetics of the thermally-induced reductive elimination of Br(2) from K[AuBr(2)(CN)(2)] in 1-BuOH yielded a t(?) of approx. 10 min to 4 h from 98 to 68 °C, and activation parameters of ΔH(?) = 131(15) kJ mol(-1) and ΔS(?) = 14.97(4) kJ K(-1)mol(-1), indicating that the elimination of the halogen provides the highest barrier to activation.  相似文献   

14.
A detailed understanding of the electronic structure of transition metal bis(dithiolene) complexes is important because of their interesting redox, magnetic, optical, and conducting properties and their relevance to enzymes containing molybdenum and tungsten bis(dithiolene) centers. The electronic structures of the bis(dithiolene) anions [M(mnt)(2)](n-) (M = Ni, Pd, Pt; mnt = 1,2-S(2)C(2)(CN)(2); n = 0-2) were examined by a combination of photodetachment photoelectron spectroscopy (PES) and density functional theory calculations. The combined experimental and theoretical data provide insight into the molecular orbital energy levels of [M(mnt)(2)](2-) and the ground and excited states of [M(mnt)(2)](1-) and [M(mnt)(2)]. Detachment features from ligand-based orbitals of [M(mnt)(2)](2-) occur at similar energies for each species, independent of the metal center, while those arising from metal-based orbitals occur at higher energies for the heavier congeners. Electronic excitation energies inferred for [M(mnt)(2)](1-) from the PES experiments agree well with those obtained in optical absorption experiments in solution, with the PES experiments providing additional insight into the changes in energy of these transitions as a function of metal. The singly charged anions [M(mnt)(2)](1-) were also prepared and studied independently. Electron detachment from the ground states of these doublet anions accessed the lowest singlet and triplet states of neutral [M(mnt)(2)], thereby providing a direct experimental measure of their singlet-triplet splitting.  相似文献   

15.
Seward C  Chan J  Song D  Wang S 《Inorganic chemistry》2003,42(4):1112-1120
The reaction of AgX, where X = trifluoroacetate (CF(3)CO(2)(-), tfa), nitrate (NO(3)(-)), trifluoromethanesulfonate (triflate, CF(3)SO(3)(-), OTf), hexafluorophosphate (PF(6)(-)), or perchlorate (ClO(4)(-)), with 2,2',3' '-tripyridylamine (tpa) yields five novel silver(I) complexes, which have been structurally characterized. The five complexes have the same 1:1 stoichiometry of Ag/tpa but exhibit different modes of coordination, depending upon the counterion present in the compound. Compound 1, [Ag(tpa)(tfa)](n)(), forms a 1D coordination polymer of [Ag(tpa)(tfa)](2) dimer units linked through bridging tfa counterions. Compound 2, [Ag(tpa)(CH(3)CN)(NO(3))](n), forms a zigzag chain 1D coordination polymer exclusively through Ag-N bonds. In compounds 1 and 2, each tpa ligand is bound to two Ag(I) ions via a 2-py and a 3-py group. Compound 3, [Ag(tpa)(OTf)](n), forms a ribbonlike 1D coordination polymer, in which each tpa ligand binds to three different silver centers via all three pyridyl groups, and the counterion remains coordinated to the Ag(I) center. Compounds 4, [Ag(tpa)(CH(3)CN)](n)(PF(6))(n), and 5, [Ag(tpa)(CH(3)CN)](n)() (ClO(4))(n), display ribbonlike structures resembling that of 3, except that the counterions are not coordinated. All complexes are luminescent in acetonitrile solution, with emission maxima in the near-UV region (lambda(max) = 366, 368, 367, 367, and 368 nm for 1-5, respectively). At 77 K, the emission maxima are red-shifted to lambda(max) = 452, 453, 450, 450, and 454 nm for 1-5, respectively.  相似文献   

16.
The photophysical properties of a series of prepared ruthenium tris(bipyridine) complexes, covalently linked to aromatic species, of type [Ru(bpy)(2)-(4-methyl-4'-(arylaminocarbonyl)-2,2'-bipyridine)](2+) ([Ru(bpy)(2)(mbpy-L)](2+), where bpy = 2,2'-bipyridine; mbpy = 4-methyl-4'-carbonyl-2,2'-bipyridine; and L = 2-aminonaphthyl (naph), 9-aminoanthryl (anth), 1-aminopyrenyl (pyr), or 9-aminoacridinyl (acrd)) were studied by electronic absorption spectroscopy and steady state and time resolved luminescence spectroscopies. The absorption spectra of the MLCT electronic transition of the complexes are similar, which is in agreement with a practically constant redox potential of Ru(III/II) close to 1.28 V versus Ag/AgCl. However, the luminescence spectra of the new complexes are red shifted compared to Ru(bpy)(3)(2+), and this effect is ascribed to solvation and inductive effects of the amide group which enhance the symmetry breakdown among the three bipyridyl ligands. The energy stabilization of the (3)MLCT state is in the range 2.1-8.4 kJ/mol. The triplet-triplet energy transfer between the Ru complex and the aromatic species linked by an amide spacer is a slow process with rate constants of 2.6 x 10(4), 3.6 x 10(4), and 4.9 x 10(4) s(-)(1) for anthracene, acridine, and pyrene as acceptors in methanol, respectively. The energy transfer rate constant increases with decreasing polarity of the solvent. In dichloromethane, the rate constants for anthracene, acridine, and pyrene acceptors are 2.6 x 10(5), 1.5 x 10(5), and 2.9 x 10(5) s(-)(1), respectively. The low efficiency of energy transfer is due to the small difference in triplet energy between donor and acceptor species, weak electronic coupling, and unfavorable Franck-Condon factors, despite the short separation distance between donor and acceptor species in an amide bridge.  相似文献   

17.
Crystals of the mixed-metal heterobimetallic Au/Ag dicyanide complex, K[AuxAg1-x(CN)2] (x = 0-->1), were obtained by slow evaporation. The mixed-metal complex K[Au0.44Ag0.56(CN)2] crystallizes in a rhombohedral crystal system, space group R. The crystal structure consists of layers of linear chains of Au(CN)2- and Ag(CN)2- ions and K+ ions that connect the layers through the N atoms. The excitation and emission spectra of single crystals of K[AuxAg1-x(CN)2] were recorded at 4.2-180 K using excitation wavelengths between 230 and 260 nm. Two emission bands due to Ag-Au interactions were observed at 343 and 372 nm. Lifetime measurements indicate the shorter-wavelength emission corresponds to fluorescence and the longer-wavelength band is phosphorescence. These new emission bands are not seen in the pure K[Ag(CN)2] or pure K[Au(CN)2] crystals. Extended Hückel calculations show that the LUMO of the mixed-metal system is bonding while the HOMO is antibonding or very weakly bonding. Moreover, excited-state extended Hückel calculations indicate the formation of exciplexes with shorter metal-metal distances and higher metal-metal overlap populations than the corresponding ground-state oligomers. The luminescence is assigned to a mixed-metal transition from a molecular orbital with Au character to a molecular orbital with Ag character.  相似文献   

18.
Chow CF  Lam MH  Wong WY 《Inorganic chemistry》2004,43(26):8387-8393
A trinuclear heterobimetallic Ru(II)-Cu(II) donor-acceptor complex, [Ru(II)((t)Bubpy)(CN)(4)-[Cu(II)(dien)](2)](ClO(4))(2) ((t)Bubpy = 4,4'-di-tert-butyl-2,2'-bipyridine; dien = diethylenetriamine) (1), has been synthesized and successfully used as an chemodosimetric ensemble for the specific detection of cyanide in aqueous DMF. X-ray crystallography, solid and solution IR spectroscopy, and conductivity measurements reveal that complex 1 is a one-dimensional polymer in the crystalline state and dissociates into its [Ru(II)((t)Bubpy)(CN)(2)[(CN)Cu(II)(dien)L](2)](2+) (L = solvent) monomeric units in polar solvents. The MLCT transition and luminescence properties of the solvatochromic [Ru(II)((t)Bubpy)(CN)(4)](2)(-) donor are perturbed by the coordination of two Cu(II) acceptors but restored in the presence of CN(-). Spectroscopic and mass spectrometric studies confirm the cleavage of the cyano bridge between Ru(II) and Cu(II) of the chemodosimetric ensemble after the binding of cyanide to the Cu(II) centers. The overall binding constant, K(B), between 1 and CN(-) is measured to be (7.39 +/- 0.23) x 10(6) M(-2). A detection limit of 1.2 microM (0.03 ppm) of CN(-) in aqueous DMF (pH 7.4) is achievable. Thermodynamic evaluation shows that the analyte specificity of chemodosimeter 1 is attributable to the relative stability of the donor-acceptor complex to that of adducts formed between the acceptor metal center and the analytes.  相似文献   

19.
[Ir(ppy)(2)(CN)(2)](-) (ppy = anion of 2-phenylpyridine) and some substituted derivatives have been investigated for their ability to interact with additional metal cations, both in solution and the solid state, via the externally-directed cyanide lone pairs, and to act as energy-donors in the resulting assemblies. [Ir(ppy)(2)(CN)(2)](-) is slightly solvatochromic, showing a blue-shift of the lowest energy absorption manifold in water compared to organic solvents, and the solubilised (t)Bu-substituted analogue [Ir((t)Buppy)(2)(CN)(2)](-) [(t)Buppy = anion of 2-(4-(t)Bu-phenyl)pyridine] is also metallochromic with coordination of the cyanide lone pairs to two M(II) cations in MeCN (M = Ba, Zn) resulting in blue-shifts of the lowest-energy absorption and emission maxima. These effects are however modest because of (i) the presence of only two cyanide groups, and (ii) the fact that the lowest-energy excited state has a substantial (3)LC component and is therefore not purely charge-transfer in nature. Crystallisation of [Ir(ppy)(2)(CN)(2)](-) as its (PPN)(+) salt in the presence of excess of lanthanide(III) salts leads to formation of assemblies based on Ir-CN-Ln bonds, which generate in the solid state either Ir(2)Ln(2)(μ-CN)(4) square assemblies or linear trinuclear species with Ir-CN-Ln-NC-Ir cores. In the Ir(2)Eu(2)(μ-CN)(4) and Ir(2)Nd(2)(μ-CN)(4) complexes the Ir-based emission is substantially quenched due to energy-transfer to lower-lying f-f states of these lanthanide ions. In addition reaction of [Ir(F(2)ppy)(2)(CN)(2)](-) [F(2)ppy = cyclometallating anion of 2-(2,4-difluorophenyl)pyridine] with [Re(phen)(CO)(3)(MeCN)][PF(6)] in solution affords dinuclear IrRe and trinuclear IrRe(2) species in which {Re(phen)(CO)(3)} units are attached to the N-donor termini of one or both of the cyanide groups; these complexes have been structurally characterised and display quantitative Ir→Re energy-transfer, showing luminescence only from the Re(I) terminus on excitation of the Ir(III) unit.  相似文献   

20.
Nonplanar Sn(IV)-porphyrin complexes, [Sn(TMPP(Ph)(8))-Cl(2)] (1) and [Sn(TMPP(Ph)(8))(OMe)(2)] (2) (TMPP(Ph)(8): 5,10,15,20-tetrakis(4-methoxyphenyl)-2,3,7,8,12,13,17,18-octaphenylporphyrinato), were prepared and characterized by spectroscopic and electrochemical methods together with X-ray crystallography. Variable-temperature (1)H NMR study revealed that the coordination of the methoxo ligand of 2 is weak enough in solution to enhance the axial ligand exchange with a Keggin-type phosphotungstate (α-[PW(12)O(40)](3-)) due to the steric stress between the axial methoxo ligand and the peripheral phenyl groups of the porphyrin ligand. The formation of a novel 1:1 donor-acceptor complex, [Sn(TMPP(Ph)(8))(OMe)(α-[PW(12)O(40)])](2-) (4) was confirmed by (1)H NMR and UV-vis spectral titrations, and also by MALDI-TOF-MS measurements. Electrochemical measurements for the donor-acceptor complex in PhCN revealed that the Sn(IV)-TMPP(Ph)(8) moiety acts as an electron donor and the α-[PW(12)O(40)](3-) moiety acts as an electron acceptor and that the energy level of the electron-transfer (ET) state of the 1:1 complex (1.17 eV) is lower than that of the triplet excited states of the SnTMPP(Ph)(8) complex (1.31 eV). Femtosecond and nanosecond laser flash photolysis measurements indicate that intersystem crossing from the singlet excited sate to the triplet excited state occurs followed by intramolecular photoinduced electron transfer from the triplet excited state of the Sn(IV)-TMPP(Ph)(8) moiety to the α-[PW(12)O(40)](3-) moiety in the 1:1 complex in benzonitrile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号