首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular structure of trichloronitromethane has been studied in the gas phase using electron diffraction data. The molecules are found to undergo low barrier rotation about the CN bond with a planar CNO2 moiety in agreement with HF/MP2/B3LYP/6-311G(d,p) calculations. The experimental data are consistent with a dynamic model using a potential function for the torsion of V = (V6/2)(1 − cos 6τ). The major geometrical parameters (rg and ) for the eclipsed form, obtained from least squares analysis of the data are as follows: r(NO3) = r(NO4) = 1.213(2) Å, r(CN) = 1.592(6) Å, r(CCl)av = 1.749(1) Å, Cl5CN/Cl6CN = 109. 6°/106.3°(2), O3NC/O4NC = 117. 6°/114.1°(4), τCl5C1N2O3 = 0.0°, and V6 = 0.20(25) kcal/mol.  相似文献   

2.
The molecular structure and conformation of 2,3-dichloro-1-propene have been determined by gas-phase electron diffraction at nozzle temperatures of 24, 90 and 273°C. The molecules exist as a mixture of two conformers with the chlorine atoms anti (torsion angle ∠φ = 0°) or gauche (∠φ = 109°) to each other and with the anti form the more stable. The composition (mole fraction) of the vapor with uncertainties estimated at 2σ was found to be 0.55 (0.08), 0.49 (0.08) and 0.41 (0.10) at 24, 90 and 273°, respectively. These values correspond to an energy difference with estimated standard deviation ΔE° = E°g-E°a = 0.7 ± 0.3 kcal mol?1 and an entropy difference ΔS° = S°g-S°a = 0.6 ± 0.9 cal mol?1 K?1. Some of the diffraction results, together with spectroscopic observations, permit the evaluation of an approximate torsional potential function of the form 2V = V1 (1 - cos φ) + V2 (1 - cos 2φ) + V3 (1 - cos 3φ); the results are V1 = 4.4 ± 0.5, V2 = ?2.9 ± 0.5 and V3 = 4.8 ± 0.2, all in kcal mol?1. The results at 24°C for the distance (ra) and angle (∠α) parameters, with estimated uncertainties of 2σ, are: r(Csp2-H) = 1.098(0.020)Å, r(Csp3-H) = 1.103(0.020)Å, r(CC) = 1.334(0.009)Å, r(C-C) = 1.504(0.013)Å, r(Csp2-Cl) = 1.752(0.021)Å, r(Csp3-Cl) = 1.776(0.020)Å, ∠C-CC = 127.6(1.1)°, ∠Csp3-Csp2-Cl = 110.2(1.0), ∠Csp2-Csp3-Cl = 113.1(1.2)°, ∠H-Csp3-H = 109.5° (assumed), ∠CC-H = 120.0° (assumed) and ∠φ = 108.9(3.4)°.  相似文献   

3.
The molecular structure of caffeine (3,7-dihydro-1,3,7-trimethyl-1H-purine-2,6-dione) was determined by means of gas electron diffraction. The nozzle temperature was 185 °C. The results of MP2 and B3LYP calculations with the 6-31G7 basis set were used as supporting information. These calculations predicted that caffeine has only one conformer and some of the methyl groups perform low frequency internal rotation. The electron diffraction data were analyzed on this basis. The determined structural parameters (rg and ∠α) of caffeine are as follows: <r(NC)ring> = 1.382(3) Å; r(CC) = 1.382(←) Å; r(CC) = 1.446(18) Å; r(CN) = 1.297(11) Å; <r(NCmethyl)> = 1.459(13) Å; <r(CO)> = 1.206(5) Å; <r(CH)> = 1.085(11) Å; ∠N1C2N3 = 116.5(11)°; ∠N3C4C5 = 121. 5(13)°; ∠C4C5C6 = 122.9(10)°; ∠C4C5N7 = 104.7(14)°; ∠N9–C4=C5 = 111.6(10)°; <∠NCHmethyl> = 108.5(28)°. Angle brackets denote average values; parenthesized values are the estimated limits of error (3σ) referring to the last significant digit; left arrow in parentheses means that this parameter is bound to the preceding one.  相似文献   

4.
The structure and conformation of dichloroacetyl chloride have been determined by gas-phase electron diffraction at nozzle temperatures of 20 and 119°C. The molecules exist as a mixture of two conformers with the hydrogen and oxygen atoms syn and gauche to each other. The composition (mole fraction of syn form) of the vapor was found to be 0.72 ± 0.06 and 0.73 ± 0.12 at 20 and 119°C, respectively, corresponding to almost equal energy for the two forms. The results for the distance (rg), angle ∠α and r.m.s. amplitude (l) parameters obtained at the two temperatures are entirely consistent. At 20°C the more important parameters, with estimated uncertainties of 3σ are: r(C-H) = 1.062(0.049)Å, r(C0) = 1.189(0.003)Å, r(C-C) = 1.535(0.008)Å, r(CO-Cl) = 1.752 (0.009)Å, r(CHCl-Cl) = 1.771(0.004)Å, ∠C-CO = 123.3(1.3)°, ∠C-CO-Cl = 113.9 (5.9)°, ∠C-CHCl—Cl = 109.5(1.5)°, ∠C1-C-Cl = 111.7(0.5)°, ∠Cl-C-H = 108.0(1.5), φ1 (HCCO torsion angle in the syn conformer) = 0.0° (assumed), φ2 (HCCO torsion angle in the gauche conformer) = 138.2(5.1)°.  相似文献   

5.
We have investigated the molecular structure and conformation of diethylmethylamine, C(4)H3C(2)H2N(1)[CH3]C(3)H2C(5)H3, by gas electron diffraction and vibrational spectroscopy with the aid of theoretical calculations. Diffraction data are consistent with a conformational mixture of 35(14)% tt + 27(14)% g+t + 20(17)% gt + 18(23)% g+g+ where the numbers in parentheses denote three times the standard errors (3σ). Normal-coordinate analysis based on B3LYP/6-311+G** calculations supports the existence of the four conformers. The dihedral angle 1(C4C2N1C3) (= −2(C5C3N1C2)) of the tt conformer was 170(4)° whereas the 1 and 2 values of the other conformers were fixed at the B3LYP/6-311++G(2df,p) values: 72.4° and −163.3° for the g+t, −66.0° and −158.2° for the gt, and 60.3° and 63.5° for the g+g+. Average values of the structural parameters (rg/Å and α/°) with 3σ are: r(N–C) = 1.462(2), r(C–C) = 1.523(3), r(C–H) = 1.113(2), CNC = 111.6(5), NCC = 114.5(5), NCH/CCHMe = 110.6(5).  相似文献   

6.
The molecular structure of vinyldimethylchlorosilane has been determined by gas phase electron diffraction at room temperature. The least squares values of the bond lengths (rg) and bond angles (∠α) are : r(CH) = 1.086(6) Å, r(CC) = 1.347(5) Å, r(SiC=) = 1.838(6) Å, r(SiC) = 1.876(3) Å, r(SiCl) = 2.078(2) Å, ∠CCSi = 127.8° (1.2) and ∠=CSiCl = 107° (1). Models with pure syn form and a mixture of syn and gauche gave equally good agreement with the diffraction data.  相似文献   

7.
The molecular structure and conformation of nitrobenzene has been reinvestigated by gas-phase electron diffraction (GED), combined analysis of GED and microwave (MW) spectroscopic data, and quantum chemical calculations. The equilibrium r e structure of nitrobenzene was determined by a joint analysis of the GED data and rotational constants taken from the literature. The necessary anharmonic vibrational corrections to the internuclear distances (r e ? r a) and to rotational constants (B e (i)  ? B 0 (i) ) were calculated from the B3LYP/cc-pVTZ quadratic and cubic force fields. A combined analysis of GED and MW data led to following structural parameters (r e) of planar nitrobenzene (the total estimated uncertainties are in parentheses): r(C–C)av = 1.391(3) Å, r(C–N) = 1.468(4) Å, r(N–O) = 1.223(2) Å, r(C–H)av = 1.071(3) Å, \({\angle}\)C2–C1–C6 = 123.5(6)°, \({\angle}\)C1–C2–C3 = 117.8(3)°, \({\angle}\)C2–C3–C4 = 120.3(3)°, \({\angle}\)C3–C4–C5 = 120.5(6)°, \({\angle}\)C–C–N = 118.2(3)°, \({\angle}\)C–N–O = 117.9(2)°, \({\angle}\)O–N–O = 124.2(4)°, \({\angle}\)(C–C–H)av = 120.6(20)°. These structural parameters reproduce the experimental B 0 (i) values within 0.05 MHz. The experimental results are in good agreement with the theoretical calculations. The barrier height to internal rotation of nitro group, 4.1±1.0 kcal/mol, was estimated from the GED analysis using a dynamic model. The equilibrium structure was also calculated using the experimental rotational constants for nitrobenzene isotopomers and theoretical rotation–vibration interaction constants.  相似文献   

8.
The molecular structure of 2,2,4,4,6,6-hexamethyl-1,3,5-trimethylenecyclohexane has been determined in the gas phase at a nozzle tip temperature of 340 K. The electron diffraction data were found to be consistent with a model where the cyclohexane ring adopts a distorted twist-boat conformation. The averaged geometrical parameters (r(g) and 90 degree angle (alpha)) obtained from least squares analysis are r(C=C) = 1.346(4) A, r(C-C)(ring) = 1.537(1) A, r(C-C)(Me) = 1.543(1) A, 90 degree angle C(6)C(1)C(2) = 117.5(11) degrees, 90 degree angle C(1)C(2)C(3) = 113.1(12) degrees, and 90 degree angle MeCMe = 108.2(13) degrees. The experimental results are consistent with the results from HF/6-311G(d) and MP2/6-311G(d) calculations where the distorted twist-boat form is found to be lower in energy than the chair form by 9.85 and 10.7 kcal/mol, respectively.  相似文献   

9.
The molecular structure of fluoromalononitrile was studied by means of gas-phase electron diffraction and quantum mechanical methods using HF/6-31G(d), MP2/6-311++G(2df,2pd) and DFT/B3LYP/6-31G(d), B3PW91/6-31G(d), B3LYP/6-311++G(2df,2pd) and B3PW91/6-311++G(2df,2pd). The r(g) and angle(alpha) structural parameters we obtained from the present analysis are: CC=1.487(5) A, CN=1.157(3) A, CF=1.386(5) A, CH=1.096 A (ass.), angleCCC=106.7(1.0) degrees , angleCCF=108.0(0.7) degrees , angleCCN=177.6(2.0) degrees . Uncertainties in parenthesis are 3sigma.  相似文献   

10.
Chloroacetyl chloride is studied by gas-phase electron diffraction at nozzle-tip tempera- tures of 18, 110 and 215°C. The molecules exist as a mixture of anti and gauche confor- mers with the anti form the more stable. The composition (mole fraction) of the vapor with uncertainties estimated at 2σ is found to be 0.770 (0.070), 0.673 (0.086) and 0.572 (0.086) at 18, 110 and 215°C, respectively. These values correspond to an energy difference with estimated standard deviation ΔEo = Eog -Eoa = 1.3 ± 0.4 kcal mol?1 and an entropy difference ΔSo = Sog -Soa = 0.7 ± 1.1 cal mol?1 K?1. Certain of the diffraction results permit the evaluation of an approximate torsional potential function of the form 2V = V1(1 - cos φ) + V2(1 - cos 2φ) + V3(1 - cos 3φ); the results are V1 = 1.19 ± 0.33, V2 = 0.56 ± 0.20 and V3 = 0.94 ± 0.12, all in kcal mol?1. The results for the distance (ra), angle (∠α) and r.m.s. amplitude parameters obtained at the three temperatures are entirely consistent. At 18°C the more important parameters are, with estimated uncertainties of 2σ, r(C-H) = 1.062(0.030) Å, r(CO) = 1.182(0.004) Å, r(C-C) = 1.521(0.009) Å. r(CO-Cl) = 1.772(0.016) Å, r(CH2-Cl) = 1.782(0.018) Å, ∠C-C-0 = 126.9(0.9)°, ∠CH2-CO-C1 = 110.0(0.7)°,∠CO-CH2-C1 = 112.9(1–7)°, ∠H-C-H = 109.5° (assumed), ∠φ (gauche torsion angle relative to 0° for the anti form) = 116.4(7.7)°, δ (r.m.s. amplitude of torsional vibration in the anti conformer) == 17.5(4.2)°.  相似文献   

11.
The molecular structure of propargylgermane, HCCCH2GeH3, has been determined by gas-phase electron diffraction. The electron-diffraction investigation has been supported by density functional theory and ab initio calculations. The ra value of the bond lengths (pm) are: r(C–Ge)=197.2(1); r(C–C)=143.9(2); r(CC)=123.1(1); r(H–Cacetylene)=108.5(3); r(C–H)=111.6(3) and r(Ge–Haverage)=153.7(2). The Ge–C–C angle is 111.7(1)° and the C–CC angle is 178.3(4)°. The uncertainties are one standard deviation from the least-squares refinement.  相似文献   

12.
Ab initio computational, microwave spectroscopic, and electron diffraction techniques have been used to study the gas-phase structure of cyclopropylbenzene. Theoretical calculations at the HF, B3LYP, and MP2 levels for basis sets 6-31G(d) and 6-311G(d) have been carried out. Both MP2 and B3LYP calculations showed the bisected form to be lower in energy (245/157 and 660/985 cal mol(-1), respectively, for basis sets 6-311G(d)/6-31G(d)). Rotational constants for the bisected form of the parent and eight singly substituted (13)C isotopic species were obtained. The selection rules of the observed rotational transitions and the facts that eight (rather than six) singly substituted (13)C isotopers are observed and assigned and that seven of the compound's nine carbon atoms lie in the molecule's symmetry plane required the molecule to exist in the bisected conformation. No transition from the perpendicular form was observed in the pulsed-jet microwave experiment. Gas-phase electron diffraction data were collected at a nozzle-tip temperature of 265 K. Least squares analyses were carried out using ED data alone and with the inclusion of microwave rotational constants. The principal structural results (r(g) and angle(alpha)) obtained from the combined ED/MW least-squares analysis are r(C-H)(av) = 1.093(6) A, r(C(7)-C(8))(v) = 1.514(20) A, r(C(8)-C(9))(d) = 1.507(26) A, r(C(7)-C(1)) = 1.520(25) A, r(C-C)(Ph) = 1.395(1) A, angleC(1)C(7)C(8) = 119.6(17) degrees, angleC(2)C(1)C(7) = 122.5(25) degrees, angleC(1)C(2)C(3) = 120.9(35) degrees, angleHC(8)C(9) = 116.7(20) degrees, angleHCC(Ph) = 120.0 degrees (assumed).  相似文献   

13.
Structural Chemistry - B3LYP and MP2(Full) calculations with large basis sets predict the planar equilibrium structure of barbituric acid and reveal large amplitude ring puckering motion which is...  相似文献   

14.
As a continuation of our systematic investigation of the effect of substituents on the ring geometry and dynamics in silacyclobutanes and in order to explore the role of the silicon atom as a mediator for electronic interactions between the attached fragments, we studied the molecular structure of 1,1-diethynylsilacyclobutane (DESCB) by means of gas-phase electron diffraction and ab initio calculations. The structural refinement of the electron diffraction data yielded the following bond lengths (ra) and bond angles (uncertainties are 3σ): r(Si–C)=1.874(2) Å, r(Si–C)=1.817(1) Å, (C–Si–C)=79.2(6)°, (C–Si–C)=106.5(6)°. The geminal Si–CC moieties were found to be bent outwards by 3.1(15)° and the puckering angle was determined to be 30.0(15)°. The evidently short Si–C bond length, which was also reproduced by the ab initio calculations, could be rationalized as being the consequence of the electronic interaction between the outer π charges of the triple bond and the 3pπ orbitals at the silicon atom. It is also likely that the conjugation of the geminal ethynyl groups leads to an enhancement of this bond contraction. Electrostatic interactions and the subsequent reduction of the covalent radius of the silicon atom may also contribute to this bond shortening. It has been found that the endocyclic Si–C bond length fits nicely within a scheme describing a monotonous decrease of the Si–C bond length with the increase of the electronegativity of the substituent in various geminally substituted silacyclobutanes.A series of related silacyclobutanes and acyclic diethynylsilanes have been studied by applying various ab initio methods and their optimized structures were compared to the structure of DESCB. Among these compounds are 1,1-dicyanosilacyclobutane (DCYSCB), which is isoelectronic to DESCB, 1,1-diethynylcyclobutane (DECB) which is isovalent to DESCB, monoethynylsilacyclobutane (MESCB) and monocyanosilacyclobutane (MCYSCB). Searching for reasonable support for the explanation of the structural results of DESCB we performed detailed natural population analysis as well as Mulliken population analysis (MPA) on DESCB and other related molecules. In contrast to the Mulliken charges, the natural atomic charges provided helpful information concerning the bonding properties in DESCB and the corresponding compounds. By varying the size of some basis sets, we could demonstrate the validity of the repeatedly discussed dependency of the Mulliken MPA on the basis set.For the performance of the quantum mechanical calculations we employed the following methods and basis sets: HF/6-31G(d,p), DFT/B3PW91/6-31G(d), DFT/B3PW91/6-311++G(d,p), MP2/6-31G(d,p) and MP2/6-311++G(d,p).  相似文献   

15.
The structure of 2,5-dihydropyrrole (C4NH7) has been determined by gas-phase electron diffraction (GED), augmented by the results from ab initio calculations employing third-order M?ller-Plesset (MP3) level of theory and the 6-311+G(d,p) basis set. Several theoretical calculations were performed. From theoretical calculations using MP3/6-311+G(d,p) evidence was obtained for the presence of an axial (63%) (N-H bond axial to the CNC plane) and an equatorial conformer (37%) (N-H bond equatorial to the CNC plane). The five-membered ring was found to be puckered with the CNC plane inclined at 21.8 (38) degrees to the plane of the four carbon atoms.  相似文献   

16.
Bromoacetyl chloride and bromoacetyl bromide are studied by gas phase electron diffraction at nozzle-tip temperatures of 70°C and 77°C, respectively. Both compounds exist as mixtures of anti and gauche conformers. The mole fraction anti, with uncertainties estimated at , was found to be 0.474(0.080) for bromoacetyl chloride and 0.615(0.069) for bromoacetyl bromide. The results for the distance (ra)and angle (∠α) parameters, with parenthesized uncertainties of 2σ including estimated uncertainty in the electron wave length and correlation effects are as follows: (1) bromoacetyl chloride, r(C-H) = 1.086(0.062) Å, r(CO) = 1.188(0.009) Å, r(C-C) = 1.519(0.018) Å, r(C-Cl) = 1.789(0.011) Å, r(C-Br) = 1.935(0.012) Å, ∠C-CO = 127.6(1.3)°, ∠C-C-Cl = 111.3(1.1)°, ∠C-C-Br = 111.0(1.5)°, ∠H-C-H = 109.5°(assumed), \?/o (gauche torsion angle relative to 0° for the anti form) = 110.0°(assumed); (2) bromoacetyl bromide, r(C-H) =1.110(0.088) Å, r(C=O) = 1.175(0.013) Å, r(C-C) = 1.513(0.020) Å, r(CO-Br) = 1.987(0.020) Å, r(CH2-Br) = 1.915(0.020) Å, ∠C-CO = 129.4(1.7)°, ∠CH2-CO-Br = 110.7(1.5)°, ∠CO-CH2-Br = 111.7(1.8)°, ∠H-C-H = 109.5°(assumed), ∠ø (gauche torsion angle relative to 0° for the anti form) = 105.0°(assumed). The structural results are discussed in connection with the structures of related molecules.  相似文献   

17.
Vapor-phase molecules of C5H5As were found, assuming C2v symmetry, to have the following structure parameters and uncertainties (2.5σ): rg(C-As)= 1.850 ± 0.003 Å, rg(C2–C3) = 1.390 ± 0.032 /rA, rg(C3–C4) = 1.401 ± 0.032 /rA, rg(C-Cave) = 1.3954 ± 0.002 Å, ∠CAsC = 97.3 ± 1.7°, ∠AsCC = 125.1 ± 2.8°, and ∠C3C3C4 = 124.2 ± 2.9°. Amplitudes of vibration were also determined. Auxiliary information is more restrictive than pure electron diffraction intensities as evidence that the molecule is rigorously planar. Structural characteristics of arsabenzene reinforce prior indications that the heterocyclic molecule is genuinely aromatic.  相似文献   

18.
《Mendeleev Communications》2020,30(5):660-662
  1. Download : Download high-res image (125KB)
  2. Download : Download full-size image
  相似文献   

19.
The geometric structure of 2,3,5,6-tetrafluoroanisole and the potential function for internal rotation around the C(sp2)-O bond were determined by gas electron diffraction (GED) and quantum chemical calculations. Analysis of the GED intensities with a static model resulted in near-perpendicular orientation of the O-CH3 bond relative to the benzene plane with a torsional angle around the C(sp2)-O bond of tau(C-O) = 67(15) degrees. With a dynamic model, a wide single-minimum potential for internal rotation around the C(sp2)-O bond with perpendicular orientation of the methoxy group [tau(C-O) = 90 degrees] and a barrier of 2.7 +/- 1.6 kcal/mol at planar orientation [tau(C-O) = 0 degrees] was derived. Calculated potential functions depend strongly on the computational method (HF, MP2, or B3LYP) and converge adequately only if large basis sets are used. The electronic energy curves show internal structure, with local minima appearing because of the interplay between electron delocalization, changes in the hybridization around the oxygen atom, and the attraction between the positively polarized hydrogen atoms in the methyl group and the fluorine atom at the ortho position. The internal structure of the electronic energy curves mostly disappears if zero-point energies and thermal corrections are added. The calculated free energy barrier at 298 K is 2.0 +/- 1.0 kcal/mol, in good agreement with the experimental determination.  相似文献   

20.
The molecular structure of (cyanomethoxy)(dimethylamino)methane in the gas phase is investigated by means of gas-phase electron diffraction and quantum-chemical studies for the first time. It is shown that in the gaseous state, (cyanomethoxy)(dimethylamino)methane is a mixture of gauche-anti (65%) and anti-gauche (35%) conformers. The slight influence of the anomeric effect on the compound’s structural parameters was noted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号