首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microwave discharges of HBr/H2/Ar and H/H2/Ar with additional do biasing of the sample were used to etch InP, GaAs, and AlGaAs at temperatures between 50–250°C. The etch rates increase by factors of 3–50 and 5–9, respectively, for HBr-and HI-based discharges over this temperature range, but display non-Arrhenius behavior. The etched surfaces became very rough above 100°C for InP with either discharge chemistry due to preferential loss of P, while GaAs and AlGaAs are more tolerant of the elevated temperature etching. The near-surface electrical properties of InP are severely degraded by etch temperatures above 100°C, while extensive hydrogen in-diffusion occurs in GaAs and AlGaAs under these conditions, leading to dopant passivation which can be reversed by annealing at 400°C.  相似文献   

2.
Electron Cyclotron Resonance (ECR) discharges of CCl2F2 or PCl3 have been used to etch InP, InAs, InSb, InGaAs and AlInAs. The etch rates of these materials increase linearly with additional RF power level applied to the cathode and are in the range 50–180 Å · min–1 for 50 W (DC bias 308 V), 10 mTorr, 38 CCl2F2/2 O2 plasmas. The etch rates fall rapidly with increasing pressure or increasing O2-to-CCl2F2 ratio. Polymeric surface residues up to 40 Å thick are found on all of these semiconductors when using Freon-based gas mixtures. Etching at practical rates is possible with only 100 V self-bias when using PCl3 discharges, and the addition of microwave excitation under these conditions enhances the etch rates by factors of 2–9. At higher self-biases (300 V) etch rates of 3500–8000 Å · min–1 are possible with PCl3 although the surface morphologies are significantly rougher and the etching less anisotropic than with CCl2F2-based mixtures.  相似文献   

3.
A systematic study has been performed of the dry etching characteristics of GaAs, Al0.3Ga0.7As, and GaSb in chlorine-based electron cyclotron resonance (ECR) discharges. The gas mixtures investigated were CCl2F2/O2, CHCl2F/O2, and PCl3. The etching rates of all three materials increase rapidly with applied RF power, while the addition of the microwave power at moderate levels (150 W) increases the etch rates by 20–80%. In the microwave discharges, the etch rates decrease with increasing pressure, but at 1 m Torr it is possible to obtain usable rates for self-bias voltages 100 V. Of the Freon-based mixtures, CHCl2F provides the least degradation of optical (photoluminescence) and electrical (diode ideality factors and Schottky barrier heights) properties of GaAs as a result of dry etching. Smooth surface morphologies are obtained on all three materials provided the microwave power is limited to 200 W. Above this power, there is surface roughening evident with all of the gas mixtures investigated.  相似文献   

4.
Point defect densities in manganese-doped III–V compounds, namely, GaAs, InP, InAs, and InSb, were calculated in terms of a joint thermodynamic model. Doping with an acceptor dopant enhances the role of vacancies of a volatile component and noticeably increases the density of anti-site defects B A ** . This effect strengthens as the bandgap width decreases and is most prominent in indium antimonide.  相似文献   

5.
6.
The gas-phase reaction thermodynamics in the chemical vapor deposition (CVD) process of preparing silicon borides with the precursors of BCl3–SiCl4–H2 is investigated with a relatively complete set of 220 species, in which the thermochemistry data are calculated with accurate model chemistry at G3(MP2) and G3//B3LYP levels combined with standard statistical thermodynamics. The data include the heat capacities, entropies, enthalpies of formation, and Gibbs free energies of formation. Based on these data, the distribution of the equilibrium concentration of the 220 species is obtained with the principle of chemical equilibrium. BHCl2, SiHCl3, and BH2Cl are found to be the crucial intermediates. This work provides fundamental data for analyzing the thermochemistry of the CVD process of the BCl3–SiCl4–H2 system, which is instructive to optimize the input precursors and temperatures for controlling the composition of the condensed phase B, SiB6, and SiB14.  相似文献   

7.
The Ga–Al eutectic melt saturated with praseodymium was studied in the temperature range 572–1076 K by electromotive force (emf) method relative to the reference electrode (InL + PrIn3, where L is the liquid phase) in a LiCl–KCl–CsCl eutectic electrolyte. The partial molar thermodynamic functions (enthalpy, entropy, and Gibbs energy) of praseo dymium in a Ga–Al eutectic melt were calculated. According to the emf measurements of the two-phase Pr–Ga–AlL + intermetallic compound alloys equilibrated with the Ga–Al eutectic melt saturated with praseodymium, there are intermetallic compounds PrGa6, PrGa4, and Pr0.22Ga0.78(PrGa2) in the temperature ranges 572–741, 741–883, and 883–1076 K, respectively.  相似文献   

8.
We propose a method for the determination of boron in aliphatic and aromatic trifluoroborates (including perfluorinated ones), ethers, and organoboron compounds containing dioxoborolane fragments, pyridine, and pyrazole rings, and triple bonds. The substances were decomposed by the oxygen flask combustion method. Boron was determined on an Agilent 4100 microwave plasma–atomic emission spectrometer. A number of organic compounds were analyzed, and the mass fraction of boron was determined with an error less than ±0.3 abs. %.  相似文献   

9.
Physicochemical studies of a new ZnTe–ZnS semiconductor system are conducted. It is found that at certain ratios of binary components, substitutional solid solutions with a cubic sphalerite structure are formed in this system. Interrelated laws governing changes in the bulk (crystal chemical, structural) and surface (acid–base) properties with varying system composition are identified. It is assumed they can be attributed to the nature of the active (acid–base) sites. The presented data, observed patterns, and an interpretation of them are used not only to confirm earlier proposed mechanisms of atomic–molecular interaction on diamond-like semiconductors, but to search for promising materials for use in highly sensitive selective sensors for environmental and medical purposes as well.  相似文献   

10.
Kinetics and Catalysis - The possibility of obtaining vitamin K3 (2-methyl-1,4-naphthoquinone, menadione) by diene synthesis from accessible substrates such as 2-methylphenol (o-cresol) and...  相似文献   

11.
To assess the effects of plasma treatment a Ni–Co/Al2O3 nanocatalyst (10 % Ni and 3 % Co) was prepared via impregnation method followed by treatment with a non-thermal plasma to be investigated in a catalytic dry reforming of methane. The impregnated and plasma-treated nanocatalysts were characterized using XRD, FESEM, EDX, TEM, BET, FTIR, and XPS techniques. The XRD patterns confirmed the presence of nickel as NiO and NiAl2O4 and cobalt as Co3O4 on alumina support. Small NiO, NiAl2O4, and Co3O4 crystals observed in plasma-treated nanocatalyst, exhibited a good dispersion of active phase in this catalyst. The average particles size in plasma-treated sample obtain by FESEM micrograph were shown to be smaller than that of impregnated sample and the morphology was more homogenous and relatively agglomeration-free in plasma-treated Ni–Co/Al2O3 nanocatalyst. According to BET analysis, specific surface area of plasma-treated sample was 58 % higher than the non-treated catalyst. TEM analysis showed that particles of active phase were fairly small and well-dispersed on Al2O3 as a result of the plasma treatment. Better dispersion of active metal on the surface of plasma-treated sample was confirmed by XPS analysis. The plasma-treated sample showed higher yield and conversion at all temperature ranges investigated and was more resistant to coke formation compared to the non-treated sample. The results from the characterization and reaction studies suggests that plasma treatment may be a promising method for obtaining more active and stable nanocatalysts for dry reforming of methane.  相似文献   

12.
New trinuclear μ3-oxocentered chromium(III, III, III) complexes were obtained by the self-assembly of ferrocenecarboxylate ligands and the Cr3O fragment. The complexes were investigated by fast-atom bombardment (FAB) mass spectrometry, cyclic voltammetry, and electronic and IR spectroscopy. V. I. Vernadskii Institute of General and Inorganic Chemistry, National Academy of Sciences of Ukraine, 32/34 Prospekt Akademika Vernadskogo, Kiev 03142, Ukraine. Translated from Teoreticheskaya i éksperimental'naya Khimiya, Vol. 36, No. 4, pp. 233–237, July–August, 2000.  相似文献   

13.
The lowest reaction pathway or one of the favored possible paths in the CVD process of preparing boron carbides with BCl3-C3H6(propene)-H2 precursors was searched theoretically, which involves 95 transition states and 103 intermediates. The geometries of the species were optimized by employing the B3PW91/6-311G(d,p) method. The transition states as well as their linked intermediates were confirmed with frequency and the intrinsic reaction coordinates analyses. The energy barriers and the reaction energies were evaluated with the accurate model chemistry method at G3(MP2) level after a non-dynamical electronic correlation detection. The heat capacities and entropies were obtained with statistical thermodynamics, and the heat capacities were fitted into analytical equations. The Gibbs free energies at 298.15 K for all of the reaction steps were reported. The energies at any temperature could be derived classically by using the analytical heat capacities. All the possible elementary reactions, including both direct decomposition and the radical attacking dissociations, for each reaction step were examined, and the one with the lowest energy or energy barrier was further studied in the next step. It was found that there are 19 reaction steps in the lowest path to produce the final BC3 cluster including two steps of initializing the reaction chain of producing H and Cl radicals. The highest energy in the lowest reaction pathway is 215.1 kJ/mol at 298.15 K and that for 1,200 K is 275.1 kJ/mol. The results are comparable with the most recent experimental observation of the apparent activation energy 208.7 kJ/mol.  相似文献   

14.
The enthalpies of the acid dissociation of glycyl-glycyl-glycine zwitterions and triglycinium ions are determined calorimetrically in water–ethanol solvents containing 0.0, 0.10, 0.30, and 0.50 molar fractions of ethanol at ionic strengths of 0.1 (maintained by sodium perchlorate) and Т = 298.15 K. It is found that increasing the ethanol content in the solvent enhances the endothermic effect of triglycinium ion dissociation and reduces the endothermic effect of glycyl-glycyl-glycine dissociation. The results are discussed in terms of the solvation thermodynamics.  相似文献   

15.
Although a great deal of research has been conducted on the electrical properties of organic devices, numerous crucial problems still remain. Of these, the study of charge mobility in organic semiconductor systems has been one of the most important subjects that has remained a puzzle for many years. It is essential to quantitatively understand conduction charge-molecular vibration coupling as well as the intermolecular interaction to discuss mobility. This article describes recent successes with direct measurements of valence hole–vibration coupling in ultrathin films of organic semiconductors with ultraviolet photoelectron spectroscopy (UPS), which can be used to experimentally study charge mobility based on energy and momentum conservation rules. The method may thus be categorized as a first-principles study of charge mobility. The detection of hole–vibration coupling of the highest occupied molecular orbital (HOMO) state in a thin film by UPS is essential to comprehending hole-hopping transport and polaron-related transport in organic semiconductors. We also need to experimentally determine energy-band dispersion or energy-level splitting in a molecular multilayer to obtain information on intermolecular interactions. Since the information on these is concealed behind the finite bandwidth of the HOMO in UPS spectra, we need to obtain high-resolution UPS measurements on organic thin films. Only careful measurements can attain the high-resolution spectra and provide these key parameters in hole-transport dynamics. A key method in achieving such high-resolution UPS measurements is also described.  相似文献   

16.
A chemistry platform for the fast continuous synthesis of III–V quantum dots is demonstrated. III-nitride QDs are prepared by using short residence times (less than 30 s) in a one-step continuous process with supercritical solvents. GaN QDs prepared via this route exhibit strong UV photoluminescence with a structuring of the emission signal at low temperature (5 K), confirming their high quality. An example of metal site substitution is given with the synthesis of InxGa1-xN solid solution. A continuous bandgap shift towards lower energies is demonstrated when increasing the indium content with strong photoluminescence signals from UV to visible. The chemistry platform proposed could be easily extrapolated to binary and ternary III phosphides or arsenides with the homologous V source.  相似文献   

17.
Polyimide–graphene composites (PIG) were prepared with variable amounts of graphene, and their thermal properties were analyzed in films on substrates or sheet states. The thermal conductivities of PIG composite sheets gradually moved upwards with increase of graphene loading. Coefficient of thermal expansion of composite sheet was higher in out-of-plane mode than in-plane mode. The residual stress of a composite film was monotonously changed in accordance with the variation of temperature and lowered with increase of graphene. In addition, the residual stress of a composite film reached to the initial stress value during cooling process after heating. The stress profiles on further heating and cooling runs closely followed the stress profile during the first cooing run.  相似文献   

18.
The energies of combustion of chitosan and its block-copolymers with different polylactide contents are determined in a static bomb calorimeter. Standard enthalpies of combustion and formation are calculated for these substances. The dependences of the thermochemical characteristics on block-copolymer composition are determined and discussed.  相似文献   

19.
Journal of Thermal Analysis and Calorimetry - Forced convection heat transfer of two different types of water-based nanofluids (Al2O3, TiO2) was investigated numerically. In this numerical...  相似文献   

20.
The glasses within composition as: (80 − x)V2O5/20Bi2O3/xBaTiO3 with x = 2.5, 5, 7.5 and 10 mol% have been prepared. The glass transition (Tg) increases with increasing BaTiO3 content. Synthesized glasses ceramic containing BaTi4O9, Ba3TiV4O15 nanoparticles of the order of 25–35 nm and 30–46 nm, respectively were estimated using XRD. The dielectric properties over wide ranges of frequencies and temperatures were investigated as a function of BaTiO3 content by impedance spectroscopy measurements. The hopping frequency, ωh, dielectric constant, ε′, activation energies for the DC conduction, Eσ, the relaxation process, Ec, and stretched exponential parameter β of the glasses samples have been estimated. The, ωh, β, decrease from 51.63 to 0.31 × 106 (s−1), 0.84 to 0.79 with increasing BaTiO3 respectively. Otherwise, the Eσ, increase from 0.279 to 0.306 eV with increasing BaTiO3. The value of dielectric constant equal 9.5·103 for the 2.5BaTiO3/77.5V2O5/20Bi2O3 glasses-ceramic at 330 K for 1 KHz which is ten times larger than that of same glasses composition. Finally the relaxation properties of the investigated glasses are presented in the electric modulus formalism, where the relaxation time and the respective activation energy were determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号