首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Stacking reactions of the dicationic fragments [LM]2+ (LM = (-C6H6)Ru, (-C6H3Me3)Ru, or (-C5Me5)Rh) with the complex (-C5H5)Co(-C4H4BCy) (Cy = cyclo-C6H11) afforded new dicationic 30-electron triple-decker complexes [(-C5H5)Co(-:-C4H4BCy)ML](BF4)2 containing a cyclohexyl-substituted borole ligand in the central position.  相似文献   

2.
Redox properties of mono- and binuclear -complexes of Cr with fluoranthene with the composition of (6-C16H10)Cr(6-C6H6), (6-C16H10)Cr(CO)3 and (-6,6-C16H10)Cr2(6-C6H6)(CO)3 are studied by cyclic voltammetry. Relations between half-wave potentials of redox processes and coordination sites of fragments Cr(6-C6H6)- and Cr(CO)3 with the ligand and their nature are found.  相似文献   

3.
Cyclic voltammetry has been used to study the electrochemical behavior of RuCl(3-C3H5)(6-C6H6) (1), [Ru(PPh3) · (3-C3H5)(6-C6H6)]BF4 (2), and Ru(PPh3)· (3-C3H5)(5-C6H7) (3); the latter was prepared by reacting2 with LiAlH4. The reduction of1 and2 gives the 19-electron complexes1 –. and 2·, whereas oxidation of3 gives the 17-electron complex3 . The reactivities of1 –·,2 ·, and3 are discussed.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1126–1128, June, 1993.  相似文献   

4.
The redox potentials of new Cr, Mn, and Fe polynuclear ladder complexes, (5-Cp)Fe(CO)2(1,5-C5H4)Fe(CO)2(1,5-C5H4)Mn(CO)3, (5-Cp)Fe(CO)2(1,5-C5H4)Mn(CO)3, (5-Cp)Fe(CO)2(1,6-Ph)Cr(CO)3, (5-Cp)Fe(CO)2(1,5-C5H4)Fe(CO)2CH2Ph, (5-Cp)Fe(CO)2(1,6-CH2Ph)Cr(CO)3, were measured and the mechanism of their electrochemical oxidation and reduction was suggested. It was shown that the - or -bonds of the bridging ligand can be cleaved selectively by applying cathodic or anodic potentials, respectively. On the basis of the obtained electrochemical data, a mechanism is suggested for the rearrangement observed when the complexes are metallated by butyllithium.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 362–366, February, 1995.This work was carried out with financial support from the Russian Foundation for Basic Research (Project No 94-03-08628a).  相似文献   

5.
Binuclear RhIII and RuII complexes of the [M1-CN-M2]+BF 4 (M1 and/or M2 are (5-Cp)(3-C3H5)Rh and (6-C6H6)(3-C3H5)Ru) type, heteronuclear organometallic compound (5-Cp)(3-C3H5)RhCNPd(3-C3H5)Cl, and mononuclear RhIII and RuII complexes [(3-C3H5)LM(MeCN)]+ BF4 (M = Rh, L = 5-Cp; M = Ru, L = 6-C6H6) were synthesized. An electrochemical study of these compounds in solutions demonstrates that the bond between the bridged CN ligand and the metal atoms is rather strong, and there is no dissociation into mononuclear fragments in solutions. The kinetics of the reaction of [(5-Cp)(3-C3H5)Rh(MeCN)]+ BF4 with halide ions was studied by electrochemical methods. The ligand exchange proceeds by a bimolecular dissociative-exchange mechanism.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 968–973, May, 1995.  相似文献   

6.
A series of are necyc lope ntadienyl complexes,i. e., [Ru(5-c5R5)(6- are ne)]+ (1, R= H, arene = C6H6; 2, R = Me, arme = C6H6; 3, R = H, arctic = C6H3Me3; 4, R = Me, arene = C6H3Me3; 5, R = H, arene = C6Me6; 6, R = Me, arene = C6Me6) was studied by cyclic voltammetry. These compounds are capable of both oxidation and reduction. The reduction potential values depend on the number of methyl groups in the complex. Reduction of benzene complexes I and 2 by sodium amalgam in THF leads to the formation of decomplexation products, the addition of hydrogen to benzene, and dimerization of the benzene ligands. Both chemical and electrochemical reductions of mesitylene complexes3 and4 result in dimeric products [(5-C5R5)Ru(-5;5-Me3H3C6H3Me3)Ru(5-C5R5)] (14, R = H; 15, R = Me). The action of sodium amalgam on compound5 gives products of hydrogen addition to both hexamethylbenzene (17) and cyclopentadienyl (18) ligands along with the major product, the dimer [5-C5H5)Ru(-5; 5-Me6C6C6Me6)Ru(5-C5H5)] (16). In contrast to5, its permcthylated analog 6 is only capable of adding hydrogen to the hexamethylbenzene ligand.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1691–1697, July, 1996.  相似文献   

7.
Oxidative dehydrodimerization of some phenylvinylidene complexes of manganese is studied by cyclic voltammetry. In the case of (5-C5H5)(CO)2Mn=C=C(H)Ph, the process occurs as the homolysis of the C–H bond in the radical cation of {(5-C5H5)(CO)2Mn=C=C(H)Ph} and the dimerization of intermediate -phenylethinyl cation [(5-C5H5)(CO)2Mn–CC–Ph]+ to a binuclear dication of bis-carbine type (5-C5H5)(CO)2Mn+C– C(Ph)=C(Ph)–CMn+(CO)2(5-C5H5). The reduction of the latter leads to binuclear bis-vinylidene complex (5-C5H5)(CO)2Mn=C=C(Ph)–C(Ph)=C=Mn(CO)2(5-C5H5). Oxidative dehydrodimerization of complexes (5-C5R5)(CO)(L)Mn=C=C(H)Ph (R = H, L = PPh3; R = Me, L = CO) occurs through the immediate C–C coupling of radical cations {(5-C5R5)(CO)(L)Mn=C=C(H)Ph} and yields binuclear dication bis-carbine complexes (5-C5R5)(CO)(L)Mn+C–C(H)(Ph)–C(H)(Ph)–CMn+(CO)(L)(5-C5R5), whose reduction leads to neutral compounds (5-C5H5)(CO)2Mn=C=C(Ph)–C(Ph)=C=Mn(CO)(L)(5-C5H5). Complex (5-C5H5)(CO)2Mn=C=C(Ph)–C(Ph)=C=Mn(CO)2(5-C5H5) undergoes the oxidation-induced nucleophilic addition of water, forming cyclic bis-carbene product with a bridge heterocyclic ligand (-3,4-diphenyl-2,5-dihydro-2,5-diylidene)-bis-(5-cyclopentadienyldicarbonyl manganese).  相似文献   

8.
The electron density distribution and atomic displacements were analyzed based on the results of precision low-temperature X-ray diffraction studies of a series of isostructural (Pnma, Z = 4) mixed metallocenes (5-C5H5)M(5-C7H7) (M = Ti, V, or Cr) and (5-C5H5)Ti(8-C8H8). The barriers to rotation of the cyclic ligands were evaluated based on rms libration amplitudes. Analysis of the deformation electron density demonstrated that the character of the M--(-ligand) chemical bond depends substantially both on the nature of the metal atom and the size of the ligand. Lowering of the local symmetry of the (5-C5H5)M(5-C7H7) complexes to CS leads to distortion of the cylindrical symmetry of the electron density distribution observed in vanadocene (5-C5H5)2V and titanocene (5-C5H5)Ti(8-C8H8).  相似文献   

9.
Summary The [2.2]paracyclophane cluster, Ru6C(CO)14( 3- 2 2 2-C16H16) (1), undergoes reaction with Me3NO and triphenylphosphine to yield Ru6C(CO)13( 3- 2 2 2-C16H16)(PPh3) (2), which may also be produced from (1) by thermolysis with PPh3 in THF. Compound (2) has been fully characterized in solution by spectroscopy and in the solid state by a single crystal X-ray diffraction analysis at 277 K, and its structure is compared with that of the parent cluster, (1). Using the same synthetic procedures, the tricyclohexylphosphine analogue, Ru6C(CO)13( 3- 2 2 2-C16H16)(PCy3) (3), has also been prepared and characterized spectroscopically. A comparison of the chemical shifts of the 577-01 protons in the 1H-n.m.r. spectra of compounds (1)–(3) together with a variety of other [2.2]paracyclophane and benzene clusters has been made.  相似文献   

10.
It was found that the 16-C6H5Cr(CO)3 ligand migrates into the cyclopentadienyl ring when the 5-C5H5(CO)2Fe 16-C6H5Cr(CO)3 binuclear complex is metallated with BunLi. Under the same conditions, no migration of the phenyl ligand in the 5-C5H5(CO)2Fe 1-C6H5 complex was observed.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 325–326, February, 1994.  相似文献   

11.
The redox behavior of sandwich indenyl complexes of the general formula (5-C9H7)ML (M=Ru and L=5-C9H7 (1), 5-C5H5 (2), 5-C5Me5 (3); M=Os, L=5-C9H7 (4)) has been studied in THF, MeCN, and CH2Cl2 by cyclic voltammetry and controlled potential electrolysis on a Pt electrode in the –85 to +20 °C temperature range. The title complexes have been found to undergo reversible one-electron oxidation to the corresponding radical cations, whose stabilities and reactivities depend on the nature of both the metal and °-ligands and of the nucleophilic properties of the solvent. The fast interaction of the electrogenerated 17-electron radical cations with nucleophiles yields bent sandwich 19-electron radical cations, [(5-C9H7)M(L)(Nu)]+ (Nu = Cl, MeCN, or THF), the latter undergoing one-electron oxidation to the corresponding [(5-C9H7)M(L)(Nu)]2+ dications. In the case of Nu=THF, the reaction of the electrogenerated 17-electron radical cations with nucleophiles appears to be reversible. Radical cations [(5-C9H7)2M] (M=Ru, Os) have been characterized by ESR spectra.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2394–2399, December, 1995.  相似文献   

12.
The lithium complex with the acenaphthylene dianion [Li(Et2O)2]22:3[Li(3:3-C12H8)]2 (1) was synthesized by the reduction of acenaphthylene with lithium in diethyl ether. According to the X-ray diffraction data, compound 1 has a reverse-sandwich structure with the bridging dianion 2:3[Li(3:3-C12H8)]2. Two lithium atoms in complex 1 are located between two coplanar acenaphthylene ligands of the 2:3[Li(3:3-C12H8)]2 2– dianion and are 3-coordinated with the five- and six-membered rings. The lanthanum complex with the acenaphthylene dianion [LaI2(THF)3]2(2-C12H8) (2) was synthesized by the reduction of acenaphthylene in THF with the lanthanum(iii) complex [LaI2(THF)3]2(2-C10H8) containing the naphthalene dianion. The 1H NMR spectrum of complex 2 in THF-d8 exhibits four signals of the acenaphthylene dianion, whose strong upfield shifts compared to those of free acenaphthylene indicate the dianionic character of the ligand. The highest upfield chemical shift belongs to the proton bound to the C atom on which, according to calculation, the maximum negative charge is concentrated.  相似文献   

13.
Summary [RuCl2(CO)2] n reacts with the Schiff base 1-acetylferrocenethiosemicarbazone, [Fe(-Cp)(-C5H4MeC=NN-HCSNH2)] to give [Fe(-Cp)(-C5H4MeC=NN-HCSNH2)RuCl2(CO)2] and with 1-acetylferrocenesemicarbazone [Fe(-Cp)(-C5H4MeC=NN-HCSNH2)] to give [Fe(-Cp)(-C5H4MeC=NN-HCSNH2)RuCl2-(CO) 2]. Spectroscopic data indicate that the Schiff bases act as bidentate ligands and coordinate to ruthenium via the hydrazinic N and either the S or O atoms, respectively, giving stable heterobimetallic complexes, which have been characterized by i.r. and 1H-n.m.r. spectroscopies, and elemental analyses.Part of this work was presented at the First International Conference in Chemistry and its applications in Doha, Qatar, 1993.  相似文献   

14.
The oxidation of the carbon-centered [(6-C13H9)Cr(CO)3] anion (1 ) results in formation of (-6:6-9,9-bifluorenyl)bis-chromiumtricarbonyl (3) due to coupling of the intermediate carbon-centered radical (1.). The oxidation of the metal-centered anion [(5-C13H9)Cr(CO)3] (2 ), which is isomeric to the 1 anion, gives an equilibrium mixture of the chromium-centered radical {(5-C13H9)Cr(CO)3}. (2 .) and its dimer [(5-C13H9)Cr(CO)3]2 (6). Radical2 . readily reacts with MeI and the solvent (THF); the resulting derivatives, (5-C13H9)Cr(CO)3R (R=Me (10); R=H (7)), undergo fast ricochet inter-ring 56 rearrangements into (6-9R-C13H9)Cr(CO)3 (R=CH3 (9); R=H (4)).Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1354–1358, July, 1995.The authors are grateful to D. V. Zagorevskii who recorded the mass spectra. This study was financially supported by the Russian Foundation for Basic Research (Grant No. 94-03-05209) and the International Science Foundation (Grant Nos. MQ 4000 and REV 000).  相似文献   

15.
Photochemical reactions of M(CO)3(5-C9H7), where M=Mn (1) or Re (2), with indene have produced 2-indene complexes M(CO)2(2-C9H8)(5-C9H7), where M=Mn (3) or Re (4). Deprotonation of complex3 witht-BuOK in THF at –60 °C gives the anion [Mn(CO)2(1-C9H7)(5-C9H7) (5), in which there occurs a rapid interchange of the Mn(CO)2(5-C9H7) group between positions 1 and 3 in the 1-indenyl ligand. The reaction of complex4 with Ph3CPF6 in CH2Cl2 at 0 °C leads to the complex [Re(CO)2(3-C9H7)(5-C9H7)PF6, whereas the similar reaction of complex3 gives only decomposition products even at –20 °C.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1280–1285, July, 1993.  相似文献   

16.
Summary Halide abstraction from RuCp*(tmeda)Cl (1,tmeda=Me2NCH2CH2NMe2) with NaBPh4 in CH2Cl2 leads to the formation of the sandwich complex RuCp*(6-C6H5BPh3) (2). In the presence of CH3CN (1 equiv.) and CO, however, the cationic complexes [RuCp*(tmeda)(CH3CN)]+ (3) and [RuCp*(temeda)(CO)]+ (5) are obtained. In CH3CN,tmeda is also replaced giving [RuCp*(CH3CN)3]+ (4). Complex1 reacts readily with terminal acetylenes HCCR, the products depending on the nature ofR (Ph, SiMe3,n-Bu, COOEt). Thus, withR=Ph the ruthenacyclopentatriene complex RuCp*(,-C4Ph2H2)Cl (6), withR=SiMe3 the cyclobutadiene complex Ru(Cp*)(4-C4H2(1,2-SiMe3)2)Cl (7), and withR=n-Bu and COOEt the binuclear complexes (Cp*)RuCl2(2:4-2-C4H2(1,3-R)2)Ru(Cp*) (8,9) are obtained. Furthermore, with diethyl maleate in the presence of 1 equiv. of LiCl,1 transforms into the new anionic complex Li[Ru(Cp*) (2-C2H2(COOEt)2)Cl2] (10). X-ray structures of2,3,4,7, and10 are included.
Substitutionsreaktionen von RuCp*(tmeda)Cl
Zusammenfassung Chloridabspaltung von RuCp*(tmeda)Cl (1,tmeda=Me2NCH2CH2NMe2) mittels NaBPh4 in CH2Cl2 führt zur Bildung des Halbsandwich-Komplexes RuCp*(6-C6H5BPh3) (2), während in Gegenwart von CH3CN oder CO die beiden kationischen Verbindungen [RuCp*(tmeda)(CH3CN)]+ (3) und [RuCp*(tmeda)(CO)]+ (5) entstehen. In CH3CN als Lösungsmittel wird sogartmeda unter Bildung von [RuCp*(CH3CN)3]+ (4) verdrängt. Komplex1 reagiert sehr leicht mit terminalen Alkinen HCCR, wobei die Produkte stark von der Natur des SubstituentenR (Ph, SiMe3,n-Bu, COOEt) abhängen. Im Fall vonR=Ph entsteht der Ruthenacyclopentatrien-Komplex RuCp*(-C4Ph2H2)Cl (6), mitR=SiMe3 der Cyclobutadien-Komplex Ru(Cp*)(4-C4H2(1,2-SiMe3)2)Cl (7), und im Fall vonR=n-Bu und COOEt bilden sich die binuklearen Komplexe (Cp*)RuCl2(2:4-2-C4H2(1,3-R)2)Ru(Cp*) (8,9). Überdies reagiert1 mit Maleinsäurediethylester in Gegenwart von LiCl zum neuen anionischen Komplex Li[Ru(Cp*) (2-C2H2(COOEt)2)Cl2] (10). Von2,3,4,7 und10 wurden die Kristallstrukturen bestimmt.
  相似文献   

17.
Summary The monodentate ligands, L, ethylamine, butylamine, cyclohexylamine, benzylamine, piperidine and morpholine, and bidentate ligands, L, 1,10-phenanthroline and 2,2-bipyridyl react with tetracarbonylbis(-cyclopentadienyl)diiron to give monosubstituted derivatives, (-C5H5)2Fe2(CO)3L, and with iododicarbonyl(-cyclopentadienyl)iron to yield ionic products, [(-C5H5)Fe(CO)2L]I. I.r. spectral studies suggest that two isomeric (-C5H5)2-Fe2(CO)3L molecules exist.  相似文献   

18.
Summary The syntheses of [Mo(5-C5H5)(3-C3H4R)(CO)(NO)]+ (R=H, 1- or 2-Me) and [Mo(5-C5H5)(3-C3H5)(NCR)(NO)]+ (R=Me or Ph), by treatment of Mo(5-C5H5)(CO)2(NO) with RC3H4Br and Ag+, and of Mo(5-C5H5)(3-C3H5)(NO)I with Ag+ in the presence of RCN, is described. Treatment of these cations with nucleophiles gives Mo(5-C5H5)(3-C3H5)(NO)X (X=halide, NCS or NCO), Mo(5-C5H5)(3-C3H5Q)(CO)(NO) (C3H5Q= propene ligand, Q= H, SCOMe, SEt, S2CNMe2, S2CNEt2, S2CN(Bu-n)2, C5H5, acac, OH, OMe or OAc), and [Mo(5-C5H5)(2C3H5L)(CO)(NO)]+ (L=PEt3, n-Bu3P, PPh3, PPh2H, PMe2Ph, C5H5N, 1-, 3- or 4-MeC5H4N and Me2NNH2). Reaction of [Mo(5-C5H5)(3-C3H5)(NCMe)(NO)+ with pyridine gave [Mo(5-C5H5)(3-C3H5)(pyr)(NO)]+, while treatment of [Mo(5-C5H5)(3-C3H5)(CO)(NO)]+ with PPh3 in the presence of NaOEt afforded Mo(5-C5H5)(CO)(NO)(PPh3). The1H and13C n.m.r. spectra of these complexes are discussed particularly in relation to the occurrence ofexo andendo isomers of the allylic species. Comparison is made briefly between Mo(5-C5H5)(3-C3H5)(NO)I and Mo(C5H5)2(NO)I.  相似文献   

19.
Reaction of [(3-C4H7)2Rh(CH3CN)2]PF6(3-C4H7 = -methallyl) with [n-Bu4N](VO3) gives a new 3-allyl cluster [n-Bu4N]2[{(3-C4H7)2Rh}2 (V4O12)] (I) which is readily converted into a diene cluster, [n-Bu4N]2 [{(4-C8H14)Rh}2(V4O12)] (II) (C8H14=2,5-dimethyl-1,5-hexadiene) by reacting with CO or P(OEt)3;I andII have been characterized crystallographically.  相似文献   

20.
Ten transition metal cluster complexes with parent and substituted cyclopentadienyl ligands, [(5-C5H4 CH2CH2)2O][MFeCoS(CO)8]2 (2 M=Mo; 3 M=W), (5-C5H5)(5-RC5H4)MFeNiS(CO)5 (5 M=Mo, R=Me; 6M= W, R=H), (5-C5H5)[5-C5H4C(O)CH2]2[WFeNiS(CO)5][WFeCoS(CO)8] (8), (5-C5H5)2[5-C5H4 C(O)CH2]2[WFeNiS(CO)5]2 (9), (5-RC5H4)[(5-C5H4CH2CH2)2O][Mo2FeS(CO)7][MoFeCoS (CO)8] (10R=MeCO; 12 R=MeO2C), (5-RC5H4)2[(5-C5H4CH2CH2)2O][Mo2FeS(CO)7]2 (11 R=MeCO; 13 R=MeO2C), were synthesized through single and double isolobal displacements and characterized by elemental analyses, i.r., 1H-n.m.r. and MS techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号