首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two sets of new o-methoxyphenylpiperazine (MPP; series a) and 1,2,3,4-tetrahydroisoquinoline (THIQ; series b) derivatives, containing various imide moieties derived from NAN190, were synthesized and evaluated in vitro for their ability to bind to the serotonin 5-HT(1A) and 5-HT(2A) receptors. All new derivatives from series a demonstrated high 5-HT(1A) affinities, whereas THIQ analogues were much less active. With respect to 5-HT(2A) receptors, three MPP derivatives presented moderate activity but the rest of the investigated compounds were practically inactive. The influence of changes in terminus geometry on 5-HT(1A) receptor affinity was analyzed in regard to model compounds NAN190and MM199.  相似文献   

2.
Over the last few years, much attention has been paid to phytocannabinoids derived from Cannabis for their therapeutic potential. Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) are the most abundant compounds of the Cannabis sativa L. plant. Recently, novel phytocannabinoids, such as cannabidibutol (CBDB) and cannabidiphorol (CBDP), have been discovered. These new molecules exhibit the same terpenophenolic core of CBD and differ only for the length of the alkyl side chain. Roles of CBD homologs in physiological and pathological processes are emerging but the exact molecular mechanisms remain to be fully elucidated. Here, we investigated the biological effects of the newly discovered CBDB or CBDP, compared to the well-known natural and synthetic CBD (nat CBD and syn CBD) in human breast carcinoma cells that express CB receptors. In detail, our data demonstrated that the treatment of cells with the novel phytocannabinoids affects cell viability, increases the production of reactive oxygen species (ROS) and activates cellular pathways related to ROS signaling, as already demonstrated for natural CBD. Moreover, we observed that the biological activity is significantly increased upon combining CBD homologs with drugs that inhibit the activity of enzymes involved in the metabolism of endocannabinoids, such as the monoacylglycerol lipase (MAGL) inhibitor, or with drugs that induces the activation of cellular stress pathways, such as the phorbol ester 12-myristate 13-acetate (PMA).  相似文献   

3.
A series of novel cannabinoid-type derivatives were synthesized by the coupling of (1S,4R)-(+) and (1R,4S)-(−)-fenchones with various resorcinols/phenols. The fenchone-resorcinol derivatives were fluorinated using Selectfluor and demethylated using sodium ethanethiolate in dimethylformamide (DMF). The absolute configurations of four compounds were determined by X-ray single crystal diffraction. The fenchone-resorcinol analogs possessed high affinity and selectivity for the CB2 cannabinoid receptor. One of the analogues synthesized, 2-(2′,6′-dimethoxy-4′-(2″-methyloctan-2″-yl)phenyl)-1,3,3-trimethylbicyclo[2.2.1]heptan-2-ol (1d), had a high affinity (Ki = 3.51 nM) and selectivity for the human CB2 receptor (hCB2). In the [35S]GTPγS binding assay, our lead compound was found to be a highly potent and efficacious hCB2 receptor agonist (EC50 = 2.59 nM, E(max) = 89.6%). Two of the fenchone derivatives were found to possess anti-inflammatory and analgesic properties. Molecular-modeling studies elucidated the binding interactions of 1d within the CB2 binding site.  相似文献   

4.
The high-performance liquid chromatographic (HPLC) separation of enantiomers of oxide and hydroxy derivatives of dibenz[a,j]acridine and 7-methylbenz[c]acridine was investigated on a chiral stationary phase chromatography column using commercially available columns. In most cases either poor or no separation of enantiomers was achieved. Normal-phase separation of diastereoisomeric ester derivatives of the hydroxy compounds, prepared from commercially available (-)-menthoxyacetic acid or (+)-alpha-methoxy-alpha-(trifluoromethyl)phenylacetic acid, was investigated. No separation of the diastereoisomeric esters of trans-3,4-dihydroxy-3,4-dihydrodibenz[a,j]acridine was observed. However, diastereoisomeric esters prepared from (+)-endo-1,4,5,6,7,7-hexachlorobicyclo[2.2.1]hept-5-ene-2-carboxyl ic acid [(+)-HCA] were easily separated. Using the three chiral acids, diastereoisomers were prepared from sixteen hydroxy derivatives of dibenz[a,j]acridine and 7-methylbenz[c]acridine. (+)-HCA esters gave good to excellent HPLC separations which were superior to those achieved using other chiral acids in most cases. The enantiomeric composition of trans-3,4-dihydroxy-3,4-dihydrodibenz[a,j]acridine formed as a major rodent liver microsomal metabolite of dibenz[a,j]acridine was determined using (+)-HCA.  相似文献   

5.
Noncovalent complexes consisting of two protonated amines and a chloride anion were observed under electrospray ionization mass spectrometry (ESI-MS) conditions. The observed phenomenon was investigated for the hydrochlorides of buspirone, a well-known anxiolytic drug, and 23 other arylpiperazine derivatives that had been developed as serotonin 5-HT(1A) receptor ligands. Due to the major role of ionic interactions in a vacuum, it was proposed that the detected complexes were formed by NH(+)---Cl(-)---NH(+) bridges. It was found that complexation depended on structural features of the analyzed compounds. For derivatives with a shorter linker (three methylene groups) containing a terminal cyclic amide fragment, complex ions were not observed. It was postulated that, in the latter case, steric hindrance due to a terminal group could disturb ionic bridge formation. Since both the observed complexation and ligand-binding processes are driven by noncovalent forces, and a qualitative relationship between them was found (compounds with a 4-carbon chain always display higher affinity for 5-HT(1A) receptors than do their 3-carbon analogues), such ESI-MS studies may yield valuable information on ligand-receptor interactions.  相似文献   

6.
In investigating potent sodium (Na(+)) channel blockers for the treatment of ischemic stroke, we synthesized a novel series of 3-amino-1-(5-indanyloxy)-2-propanol derivatives and evaluated their inhibitory effects on neuronal Na(+) channels. The 3-amino-1-(5-indanyloxy)-2-propanol derivatives exhibited potent blocking activity for Na(+) channels and a significantly low affinity for dopamine D(2) receptors, which demonstrates a minimal clinical risk for extrapyramidal side effects. In particular, compound 4b, a 3-amino-1-(5-indanyloxy)-2-propanol derivative bearing a benzimidazole moiety, showed desirable neuroprotective activity in a rat transient middle cerebral artery occlusion model. Furthermore, compound 4b displayed a high binding affinity for neurotoxin receptor site 2 of the Na(+) channels, which suggests that 4b would act as a use-dependent Na(+) channel blocker in sustained depolarization during ischemic stroke.  相似文献   

7.
《Tetrahedron: Asymmetry》2006,17(12):1817-1823
Starting from (1S,4R) chiral ketone (+)-6, we developed a synthetic route to the synthesis of new chiral γ-amino alcohols (+)- and (−)-syn-2-amino-7-hydroxy norbornane derivatives with excellent yields and enantiomeric excesses (up to 99%). These compounds were tested as chiral catalysts in the enantioselective addition of diethylzinc to benzaldehyde presenting moderate results. The results obtained, compared with others previously reported, showed that the relative disposition of the amino and hydroxyl groups on C(2) and C(7) positions, play an important role in the catalytic activity.  相似文献   

8.
《Tetrahedron: Asymmetry》2007,18(4):537-541
Both enantiomers of cyclopropanated analogues of geraniol, nerol, nor-leaf alcohol, and matsutake alcohol were synthesized and their odor properties evaluated. Odor characters in enantiomeric pairs were similar in the geraniol series. The (+)-(2R,3S)-nerol derivative showed various odor aspects. From the results of nor-leaf alcohol derivatives, an interaction between the (2-re,3-re)-face of nor-leaf alcohol and the human olfactory receptor was suggested. The odor of (3R)-matsutake alcohol derivative was superior to the enantiomer.  相似文献   

9.
Novel, functionalized octahydrochromane derivatives were synthesized in a single step via the Prins reaction. Enantiomerically pure (+)-isopulegol was reacted with benzaldehyde to stereoselectively yield the corresponding octahydro-2H-chromen-4-ol derivative containing five stereocenters. A total of 10 compounds were synthesized by altering the enantiomer of isopulegol and the substituted benzaldehyde, and the resulting enantiopure octahydrochromanes were screened in vitro against the cannabinoid receptor isoforms CB1 and CB2. Compounds containing an olefin at the C4 position [(+)-3c, (?)-3c, (?)-7c, (?)-9c and (?)-11c] of the octahydrochromane scaffold were found to exhibit reasonable displacement of [3H] CP55,940 from the CB receptors, whereas the corresponding hydroxy analogs [(+)-3a, (+)-3b, (?)-3a, (?)-3b and (+)-5a] had very little or no effect.  相似文献   

10.
BackgroundCannabis sativa has been attributed to different pharmacological properties. A number of secondary metabolites such as tetrahydrocannabinol (THC), cannabinol (CBD), and different analogs, with highly promising biological activity on CB1 and CB2 receptors, have been identified.MethodsThus, this study aimed was to evaluate the activity of THC, CBD, and their analogs using molecular docking and molecular dynamics simulations (MD) methods. Initially, the molecules (ligands) were selected by bioinformatics searches in databases. Subsequently, CB1 and CB2 receptors were retrieved from the protein data bank database. Afterward, each receptor and its ligands were optimized to perform molecular docking. Then, MD Simulation was performed with the most stable ligand-receptor complexes. Finally, the Molecular Mechanics-Generalized Born Surface Area (MM-PBSA) method was applied to analyze the binding free energy between ligands and cannabinoid receptors.ResultsThe results obtained showed that ligand LS-61176 presented the best affinity in the molecular docking analysis. Also, this analog could be a CB1 negative allosteric modulator like CBD and probably an agonist in CB2 like THC and CBD according to their dynamic behavior in silico. The possibility of having a THC and a CBD analog (LS-61176) as a promising molecule for experimental evaluation since it could have no central side-effects on CB1 and have effects of CB2 useful in pain, inflammation, and some immunological disorders. Docking results were validate using ROC curve for both cannabinoids receptor where AUC for CB1 receptor was 0.894±0.024, and for CB2 receptor AUC was 0.832±0032, indicating good affinity prediction.  相似文献   

11.
The in vitro antiandrogenic activity of four new progesterone derivatives: 4, 5, 6 and 7 (8 is a known compound) was determined. These compounds were evaluated as 5alpha-reductase inhibitors as well as by their capacity to bind to the androgen receptor in gonadectomized hamster prostate. The IC(50) value was determined using increasing concentrations of 4, 5, 6, 7 and 8 in the presence of [(3)H]T and the microsomal fraction of the hamster prostate containing the 5alpha-reductase enzyme. In this paper we also demonstrated the effect of increasing concentrations of the novel steroids upon [(3)H]DHT binding to the androgen receptors from hamster prostate which produces competition for the androgen receptor sites. The in vitro studies showed that steroids 4, 5, 6, 7 and 8 had an inhibitory activity for the 5alpha-reductase with IC(50) of: 4 (0.17 microM), 5 (0.19 microM), 6 (1 microM), 7 (4.2 microM), and 8 (2.7 microM). On the other hand, the IC(50) value for compounds 4, 5, 6, 7, 8 and DHT showed the following order of affinity for the androgen receptor: 6>7>5>DHT. Surprisingly compounds 4 and 8 did not bind to the androgen receptor. The overall data indicate that all synthesized compounds are inhibitors for the enzyme 5alpha-reductase present in the hamster prostate. In contrast, compounds 5, 6 and 7, which have a cyclohexyl group in the side chain showed a high affinity for the androgen receptor.  相似文献   

12.
In an attempt to generate nicotinic acetylcholine receptor (nAChR) ligands selective for the alpha4beta2 and alpha7 subtype receptors we designed and synthesized constrained versions of anabasine, a naturally occurring nAChR ligand. 2-(Pyridin-3-yl)-1-azabicyclo[2.2.2]octane, 2-(pyridin-3-yl)-1-azabicyclo[3.2.2]nonane, and several of their derivatives have been synthesized in both an enantioselective and a racemic manner utilizing the same basic synthetic approach. For the racemic synthesis, alkylation of N-(diphenylmethylene)-1-(pyridin-3-yl)methanamine with the appropriate bromoalkyltetrahydropyran gave intermediates which were readily elaborated into 2-(pyridin-3-yl)-1-azabicyclo[2.2.2]octane and 2-(pyridin-3-yl)-1-azabicyclo[3.2.2]nonane via a ring opening/aminocyclization sequence. An alternate synthesis of 2-(pyridin-3-yl)-1-azabicyclo[3.2.2]nonane via the alkylation of N-(1-(pyridin-3-ylethylidene)propan-2-amine has also been achieved. The enantioselective syntheses followed the same general scheme, but utilized imines derived from (+)- and (-)-2-hydroxy-3-pinanone. Chiral HPLC shows that the desired compounds were synthesized in >99.5% ee. X-ray crystallography was subsequently used to unambiguously characterize these stereochemically pure nAChR ligands. All compounds synthesized exhibited high affinity for the alpha4beta2 nAChR subtype ( K i < or = 0.5-15 nM), a subset bound with high affinity for the alpha7 receptor subtype ( K i < or = 110 nM), selectivity over the alpha3beta4 (ganglion) receptor subtype was seen within the 2-(pyridin-3-yl)-1-azabicyclo[2.2.2]octane series and for the muscle (alpha1betagammadelta) subtype in the 2-(pyridin-3-yl)-1-azabicyclo[3.2.2]nonane series.  相似文献   

13.
The cannabinoid receptor 2 (CB2 receptor) has attracted considerable interest, mainly due to its potential as a target for therapeutics for treating various diseases that have a neuroinflammatory or neurodegenerative component while avoiding the adverse psychotropic effects that accompany CB1 receptor-based therapies. With the appreciation that CB2-selective ligands show marked functional selectivity, there is a renewed opportunity to explore this promising area of research from both a mechanistic as well as a therapeutic perspective. In this research, we are interested in the discovery of new chemotypes as highly selective CB2 modulators, which may serve as good starting points for further optimization towards the development of CB2 therapeutics. In search of new chemotypes as CB2 selective agents, we screened a series of triazole derivatives with interesting bioactive scaffolds, which led to the discovery of two novel and highly selective ligands for CB2 receptors. Compounds 6 and 11 produced a concentration-dependent inhibition of specific [3H]-CP55,940 (CB2) binding with Ki ± SEM values of 105.3 ± 22.6 and 116.4 ± 19.5 nM, respectively, while no binding affinity towards CB1 receptors or opioid receptors was observed. The CB2 functional activity of 6 and 11, as measured by a GPCR Tango assay (G-protein independent β-arrestin translocation assay), revealed that these compounds act as CB2 agonists with EC50 values ± SEM of 1.83 ± 0.16 and 1.14 ± 0.52 µM, respectively. Molecular modeling results showed that both compounds fit well into the active site of the CB2 receptor and showed strong hydrophobic interactions with key residues. In conclusion, the new triazole derivatives (6 and 11) showed promising activity towards CB2 receptors and have great potential to be developed into therapeutically useful CB2 agonists through hit-to-lead optimization.  相似文献   

14.
A series of [2-(omega-phenylalkyl)phenoxy]alkylamines was synthesized and their receptor binding affinity was examined in vitro. These compounds showed an affinity for serotonin-2 (5-HT2) and dopamine-2 (D2) receptors. [2-(2-phenylethyl)phenoxy]alkylamine derivatives with a pyrrolidine or piperidine moiety in the structure showed higher affinity for 5-HT2 receptors but lower affinity for D2 receptors. Among these compounds, (S)-2-[2- [2-[2-(3-methoxyphenyl)ethyl]phenoxy]ethyl]-1-methylpyrrolidine, (S)-27, exhibited the most potent and selective affinity for 5-HT2 receptors. Furthermore, (S)-27 was effective in inhibiting 5-HT-induced vasoconstriction in vitro and platelet aggregation both in vitro and ex vivo.  相似文献   

15.
In the last years, the connection between the endocannabinoid system (eCS) and neuroprotection has been discovered, and evidence indicates that eCS signaling is involved in the regulation of cognitive processes and in the pathophysiology of Alzheimer’s disease (AD). Accordingly, pharmacotherapy targeting eCS could represent a valuable contribution in fighting a multifaceted disease such as AD, opening a new perspective for the development of active agents with multitarget potential. In this paper, a series of coumarin-based carbamic and amide derivatives were designed and synthesized as multipotent compounds acting on cholinergic system and eCS-related targets. Indeed, they were tested with appropriate enzymatic assays on acetyl and butyryl-cholinesterases and on fatty acid amide hydrolase (FAAH), and also evaluated as cannabinoid receptor (CB1 and CB2) ligands. Moreover, their ability to reduce the self-aggregation of beta amyloid protein (Aβ42) was assessed. Compounds 2 and 3, bearing a carbamate function, emerged as promising inhibitors of hAChE, hBuChE, FAAH and Aβ42 self-aggregation, albeit with moderate potencies, while the amide 6 also appears a promising CB1/CB2 receptors ligand. These data prove for the new compounds an encouraging multitarget profile, deserving further evaluation.  相似文献   

16.
The cannabinoid receptors (CB1/CB2) and the T-type calcium channels are involved in disorders associated with both physiological pain and depressive behaviors. Valuable pharmacological species carbazole derivatives such as the NMP-4, NMP-7, and NMP-181 (Neuro Molecular Production) regulate both biological entities. In this work, DFT calculations were performed to characterize theoretically their structural and chemical reactivity properties using the BP86/cc-pVTZ level of theory. The molecular orbital contributions and the chemical reactivity analysis reveal that a major participation of the carbazole group is in the donor-acceptor interactions of the NMP compounds. The DFT analysis on the NMP compounds provides insights into the relevant functional groups involved during the ligand-receptor interactions. Molecular docking analysis is used to reveal possible sites of interaction of the NMP compounds with the Cav3.2 calcium channel. The interaction energy values and reported experimental evidence indicate that the site denominated as “Pore-blocking”, which is formed mainly by hydrophobic residues and the T586 residue, is a probable binding site for the NMP compounds.  相似文献   

17.
A novel series of 2,4‐disubstituted oxazole derivatives were synthesized, screened for their anti‐tumor activity against three cell lines MCF‐ 7 , TK‐10, and UACC‐62. Molecular docking study was carried out against epidermal growth factor receptor. A new series of 2‐phenyl‐4‐substituted oxazole derivatives were synthesized. A series of chiral α‐amino acid derivatives 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 were synthesized by coupling various l ‐acylated amino acid azide 3. The synthesized compounds were tested for their in vitro antitumor activity against MCF‐7, TK‐10, and UACC‐62 cell lines. Compound 6 exhibited the strongest inhibitory activity against TK cell lines, while compound 12 showed the highest activity against MCF‐7 cell lines. Compound 14 was the most active against UACC‐62 cell lines. Furthermore, a molecular docking study of the most active compounds was carried out using epidermal growth factor receptor X‐ray 3D structure (protein data bank ID 1 M17). Docking results revealed that compound 6 showed the highest binding energy of ΔG = ?78.17 Kcal/mol.  相似文献   

18.
A novel enantiomeric separation method by capillary electrochromatography with chiral crown ether-bonded negatively charged polyacrylamide gels is presented. Two kinds of chiral crown ether derivatives, (+)-tetraallyl 18-crown-6 carboxylate and (+)-18-crown-6 tetracarboxylic acid 2-allyl ester were synthesized and allowed to covalently bind to a negatively charged polyacrylamide gel, a so-called monolithic stationary phase, respectively. The gel was placed in fused-silica tubing, the walls of which had been activated with a bifunctional reagent to make the resulting gel bind covalently to the inner surface. Enantiomeric separations of 12 primary amino compounds were achieved using these columns and mobile phases of 200 mM triethanolamine-300 mM boric acid buffers with high efficiencies of up to 135000 plates m(-1). Both the within- and between-run reproducibilities of retention time and separation factor were good. The reproducibilities of retention time and separation factor for three different columns prepared from a different batch of monomers were acceptable. The gel-filled capillaries were stable for at least 13 months with intermittent use for 3 months followed by storage at room temperature for 10 months. The result of the optical purity test of alanine-2-naphthylamide is also described.  相似文献   

19.
The facile and convenient preparation of both enantiomers of a [7]helicene scaffold from inexpensive (l )-(+)-tartaric acid and 4-methylstyrene is described. These helical structures were transformed into bis-iodinated ether derivatives in order to explore their potential as precursors of novel chiral organoiodane reagents or as iodoarene pre-catalysts. Promising results were obtained in hydroxylative phenol dearomatization/[4+2] cycloaddition cascade and dearomative spirolactonization reactions with encouraging enantiomeric excesses.  相似文献   

20.
The present study was undertaken to evaluate whether a novel series of 2,6-diaza-5-oxobicyclo[5.4.0]undeca-1(7),8,10-triene derivatives exhibited antagonistic activity for vasopressin V1 and V2 receptors. Most of these compounds were synthesized and showed a high affinity potential for V2 receptor and low to moderate affinity potential for V1 receptor. The most potent and V2-selective compound, N-[4-[2,6-diaza-6-[2-(4-methylpiperazinyl)-2-oxoethyl] -5- oxobicyclo[5.4.0]undeca-1(7),8,10-trien-2-yl]-carbonyl]pheny l][2-(4- methylphenyl)phenyl]-formamide (11b), exhibited IC50's of 2.9 nM for the V2 receptor and 200 nM for the V1 receptor, respectively. When administered orally to rat, 11b showed an approximately 18-fold increased urine volume in comparison with control rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号