首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The intensity of fluorescence of Eu(III) and Sm(III) ions sensitized by molecules of n-benzoyltrifluoroacetone and 1,10-phenanthroline introduced in a water solution in a ratio of 3: 1 is studied as a function of the ion concentration in the solution. The comparison of the fluorescence decay curves of Eu(III) and Sm(III) in D2O and H2O (pH≥7) solutions containing 10?4 M of n-Cl-BTFA and 3×10?5 M of 1,10-phen and the values of τfl of Sm(III) in themselves (51–90 μs) are indicative of an insignificant content of water molecules in the first coordination sphere of ions. The effect of other ions on I fl and τfl of Eu(III) ions is studied under these conditions. The intensity of fluorescence of Eu(III) in solutions of 10?4 M Cl-BTFA and 3×10?5 H 1,10-phen is found to increase by 1–2 orders of magnitude in the presence of Y(III) and Gd(III) ions, and the magnitude of this effect is unaffected by deoxygenation of the solution. The introduction of a third ion Nd(III) in the solution is shown to attenuate the influence of Gd(III) on I fl of Eu(III) for Nd(III) concentrations commensurable with the Eu(III) concentration in the solution. The strength of the influence of Gd(III) ions on I fl of Eu(III) is found to depend on the method of preparation of the solution. The analysis of the results obtained testifies that inhomogeneities consisting of chelates of lanthanide ions displaced from the water structure appear in water. The presence of these inhomogeneities results in efficient energy transfer from ligands of Gd(III) chelates to Eu(III) chelates, which is the reason for the increasing I fl of Eu(III). The possibility of using data on the enhancement of I fl of Eu(III) in the presence of Gd(III) and on the reduction of τfl of Eu(III) in the presence of Nd(III) for estimating dimensions and structures of displaced systems is discussed.  相似文献   

2.
The intensity I lum and lifetime τlum of the luminescence of complexes of Eu(III) and Tb(III) ions with β-diketones and o-phenanthroline in water-ethanol solutions of these ligands have been analyzed as functions of the concentrations of ligand, luminescing lanthanide ions, and added ions causing columinescence and of the solvent deuteration. It is shown that the formation of nanostructures from Ln complexes and their coarsening leads to an increase in τlum of Eu(III) and Tb(III) and that this increase is due to the suppression of both photochemical deexcitation of these ions and transfer of their electronic excitation energy to OH vibrations of water molecules. The disappearance of the dependence of I lum of Eu(III) on deuteration of water-ethanol solutions of n-methoxybenzoyltrifluoracetone + o-phenanthroline caused by adding Gd(III) ions is explained by the shift of the equilibrium of formation of complexes of Ln chelates to neutral hydrophoblic forms corresponding to the formation of nanostructures of these chelates in the solution. The differences in effect of La(III) and Gd(III) ions on I lum and τlum of Eu(III) and Tb(III) complexes are explained. It is shown that the widely discussed effect of columinescence not only results from the energy migration in mixed structures of Eu or Tb complexes and Gd complexes but is also due to a large extent to the decrease in τlum of Eu(III) or Tb(III) caused by their incorporation into nanostructures.  相似文献   

3.
We studied sensitization of Eu(III) and Tb(III) ions by molecules of 1,10-phenanthroline and 2,2-bipyridil in D2O and d 6-ethanol and the influence of Nd(III), Pr(III), Sm(III), Gd(III), and Ho(III) ions on the luminescence intensity I lum and lifetime τlum of Eu(III) and Tb(III) in solutions. The stability constants of complexes of Eu(III) and Gd(III) with 2,2′-bipyridil are measured by spectrophotometric and luminescence methods. It is shown that luminescence of Eu(III) is quenched by Gd(III) ions at the ion concentration equal to 10?2–10?1 M, which is caused by competing between these ions for a sensitizer. At the concentration of Ln(III) ions equal to 10?6?10?3 M, the sensitized luminescence of Eu(III) and Tb(III) was quenched and τlum decreased in the presence of Nd(III) ions, whereas in the presence of Gd(III) the luminescence intensity increased. It is proved that a bridge that connects the two ions upon energy transfer is formed by hydroxyl groups. The intensity of luminescence of Eu(III) and Tb(III) in aqueous solutions and its lifetime decreased in the presence of hydroxyl groups, while upon addition of Gd(III) to these solutions these quantities were restored. We also found that the addition of Gd(III) to deoxygenated ethanol solutions of 2,2′-bipyridil and Eu(III) slows down photochemical and thermal reactions between bipyridil and Eu(III), resulting in the increase in the luminescence intensity of Eu(III).  相似文献   

4.
We studied the luminescence intensity (I lum) of the ions Eu(III) and Sm(III) in relation to the concentrations of ions Ln(III) and Al(III) in water at pH 7 at an excess of such beta-diketones as p-methoxybenzoyltrifluoroacetone (MBTA), dibenzoylmethane (DBM), and tenoyltrifluoroacetone (TTA) and in the presence of 1,10-phenanthroline (phen) used as a synergistic agent. Both the enhancement of I lum (Eu(III)) upon addition of Gd(III) (co-luminescence) and the effect of the third ion are found to depend on the order of addition of the ions to the solution and, therefore, on the sequence of formation of nanostructures of complexes of these ions in the solution, in which the transfer of the triplet energy of the organic part of complexes takes place, leading to an enhancement in I lum (Eu(III)). The intensity I lum (Eu(III)) is shown to increase equally rapidly upon addition of either Gd(III) or Al(III) to solutions with DBM + phen. In solutions of all the three beta-diketones studied, the Eu(III) ions incorporate better into nanostructures of triply charged ions whose radius is similar to or smaller than the radius of the Eu(III) ions. Our study of the effect that the replacement of H2O with D2O exerts of I lum of 5 × 10?8 M Eu(III) at different concentrations of ligands shows that, at [Ln(III)] < [OH?] and at a concentration of beta-diketones smaller than 3 × 10?5 M, the deuteration affects I lum(Eu(III)) and, therefore, the first coordination sphere of Eu(III) contains OH groups. It is shown that, in aqueous solutions with 3 × 10?5 M TTA + 10?5 M phen, the increase in I lum(Eu(III)) caused by the introduction of Gd(III) ions results from two processes occurring in the nanostructures of these complexes: the energy transfer from Gd(III) complexes to Eu(III) complexes and the increase of I lum of Eu(III) itself under the conditions in the solution where the total concentration [Ln] ? [OH?] and both the photochemical deactivation of Eu(III) and the exchange of its excitation energy for vibrations of the OH groups are suppressed. The reliability of the size estimation of nanostructures of metal complexes is discussed in terms of the effect of these nanostructures on I lum of chelates of Eu(III).  相似文献   

5.
The formation of nanostructures that consist of complexes of β-diketones with 1,10-phenanthroline and involve dyes of the polymethine, triphenylmethane, oxazine, and xanthene series is observed in aqueous solutions. It is found that nanostructures of complexes of Ln(III) ions and dyes are reliably observed at concentrations of Ln complexes from 0.5 to 5 μM and at dye concentrations above 5 nM. Nanostructures of complexes Eu(MBTA)3phen, Eu(NTA)3phen, Eu(PTA)3phen, Tb(PTA)3phen, Gd(MBTA)3phen, and Lu(MBTA)3phen with dyes are studied, where MBTA is n-methoxybenzoyltrifluoroacetone, NTA is naphthoyltrifluoroacetone, PTA is pivaloyltrifluoroacetone, and phen is 1,10-phenanthroline. It is shown that nanostructures formed can contain dye molecules not only inside a nanostructure of Ln complexes but also on its outer shell. It is proved that, at a dye concentration in the solution of the order of nanomole or higher, the formation of mixed nanostructures of Eu complexes and dyes whose S 1 level is below the 5 D 0 level of Eu(III) leads to the quenching of the luminescence of Eu(III) and gives rise to the sensitized luminescence of dyes. The energy transfer efficiency from Eu(III) ions to dye molecules is determined by the ability of these molecules to incorporate into nanostructures of Eu complexes. The effect of the formation of nanostructures on the shape and position of the spectra of luminescence and absorption of dyes is studied. Comparison of the sensitized luminescence intensities of Nile blue in structures of Eu, Lu, and Gd complexes shows that the greater part of the excitation energy of Eu complexes is transferred directly from ions to dye molecules according to the inductive-resonance energy transfer mechanism rather than by means of energy migration over singlet levels of organic ligands in complexes of a nanostructure.  相似文献   

6.
The monitoring of variations in the luminescence intensity (I lum) of nanostructures of Eu(MBTA)3phen (MBTA is p-methoxybenzoyl trifluoroacetonate) complexes formed in aqueous solutions upon the introduction of anions is proposed as a method of analyzing the composition of Eu(III), Gd(III) and Lu(III) phosphate complexes in solutions with [PO 4 3? ] < [Ln]. It is found that low-lability binuclear complexes, which rearrange within an hour or longer, are formed in these solutions. It is shown that the lability of Ln(III) carbonate complexes exceeds the lability of Ln(III) complexes with PO 4 3? . An analysis of the dependence of I lum of the solution on the concentration of Eu(III) ions and on the time from the instant of the solution preparation shows that, in aqueous solutions where the concentration of anions is higher than the concentration of Ln(III) ions, nanostructures of Eu(III) phosphate and carbonate salts are formed in the range of Ln(III) concentrations 0.5–5 μM at concentrations of anions on the order of 10 μM and at concentrations of exceeding 100 μM. The rearrangement of these nanostructures to nanostructures of Eu(MBTA)3phen complexes is studied.  相似文献   

7.
Uninuclear europium (Eu), as well as binuclear Eu and terbium (Tb), complexes were synthesized using acrylic acid (AA) as the first ligand and 1,10-phenanthroline (Phen) as the second ligand. The relative weight ratio of the europium (III) (Eu3+) to terbium (III) (Tb3+) ions of the binuclear complex was 1:1 as determined via energy dispersive X-ray analysis. The structures of the Eu(AA)3Phen and Eu0.5Tb0.5(AA)3Phen complexes were characterized by Fourier transform infrared spectroscopy. A series of tri-cellulose acetate (TCA)/ the Eu(AA)3Phen and TCA/Eu0.5Tb0.5(AA)3Phen composites were prepared by solution blending, and their luminescent properties were investigated by fluorescence spectrophotometry. The excitation spectra of all composites indicated that the TCA matrix probably affected the energy absorption and transfer of organic ligands. In TCA/Eu0.5Tb0.5(AA)3Phen composites the introduced Tb3+ ions had some influence on energy absorption and transfer of organic ligands; the energy transfer process of the complex is suggested to be as follows: Phen→AA→Tb3+ion→Eu3+ion. The emission spectra indicated that the luminescent intensity of the TCA/Eu0.5Tb0.5(AA)3Phen composites was noticeably stronger than that of the TCA/Eu(AA)3Phen composites, suggesting that the comparatively stable and high-efficiency energy transfer process was only slightly influenced by the TCA matrix. In summary, the TCA/Eu0.5Tb0.5(AA)3Phen (90/10) composite possesses fine luminescent properties for potential usage as red fluorescent materials.  相似文献   

8.
In this paper, a novel luminescent organic-inorganic hybrid material containing covalently bonded ternary europium complex in mesoporous silica MCM-41 has been successfully prepared by co-condensation of tetrethoxysilane (TEOS) and the modified ligand 2-phenyl-1H-imidazo[4,5-f][1,10]phen-3-(triethoxysilyl)propylcarbamate (PIP-Si) in the presence of cetyltrimethylammonium bromide (CTAB) surfactant as template. PIP-Si containing 1,10-phenanthroline covalently grafted to 3-(triethoxysilyl)propyl isocyanate is used not only as a precursor but also as the second ligand for Eu(TTA)3·2H2O (TTA: 2-thenoyltrifluoroacetate) complex to prepare a novel functionalized mesoporous material. The resulted mesoporous composite materials, which demonstrate strong characteristic emission lines of Eu3+5D0-7FJ (J=0, 1, 2, 3, 4), were characterized by Fourier transform infrared (FT-IR), small-angle X-ray diffraction, excited-state decay analysis. Emission intensity of the Eu(III) complex covalently linked to MCM-41 (Eu-MCM-41) increases with the increasing irradiation time, demonstrating better photostability compared with both pure Eu(III) complex and physically incorporated sample.  相似文献   

9.
The results of our investigation on the sensitized luminescence properties of three Eu(III) ??-diketonate complexes of the form [Eu2(fod)6(??-bpm)], [Eu(fod)3(phen)] and [Eu(fod)3(bpy)] and 4f?C4f absorption properties of their Er(III) analogues ( fod = anion of 6,6,7,7,8,8,8- heptafluoro-2,2-dimethyl-3,5-octanedione, bpm = 2,2??-bipyrimidine, phen = 1,10-phenanthroline and bpy = 2,2??-bipyridyl) in a series of non-aqueous solvents are presented. The Eu(III) complexes are highly luminescent and their luminescence properties (intensity and band shape) are sensitive to the changes in the inner coordination sphere of the Eu(III) ion. The luminescence intensity of the mononuclear complexes in pyridine is drastically decreased. The coordination structure of the complexes in pyridine is transformed into a more symmetrical one which results into a slow radiative rate of the emission from the complexes. The ancillary ligands, phen and bpy are found better co-sensitizers as compared to the bpm to sensitize Eu(III)-luminescence. The 4f?C4f absorption properties (oscillator strength and band shape) of the Er(III) complexes demonstrate that 4G11/2 ?? 4I11/2 and 2H11/2 ?? 4I15/2 hypersensitive transitions of Er(III) are very sensitive in some coordinating solvents which reflects complex?Csolvent interaction in solution. The hypersensitive transitions of [Er(fod)3(phen)] remain unaffected in any of the solvents and this complex retains its bulk composition in solution. The erbium complexes as well as the Er(fod)3 chelate are invaded by DMSO. This solvent enters the inner coordination sphere by replacing heterocyclic ligand and the complexes acquire similar structure [Er(fod)3(DMSO)2] in this solvent. The results reveal that the luminescence and absorption properties of lanthanide complexes in solution can be controlled by tuning the coordination structure through ancillary ligands and donor solvents. This work shall prove useful in designing new biological applications with such probes.  相似文献   

10.
We study the regular features of the behavior of the intensity I lum and the luminescence decay time τ lum of complexes of Eu and Tb ions with several β-diketones and 1,10-phenanthroline in the case where these complexes from nanostructures with complexes of lanthanide ions that are electronic excitation acceptors of these Eu and Tb ions. The composition of mixed nanostructures formed in a solution is shown to depend on the method of their preparation, on the ability of complexes to form mixed rather than homogeneous nanostructures, and on the concentration of complexes in the solution. We reveal that complexes of Yb, Tm, and Dy ions simultaneously increase I lum and τ lum of Eu complexes due to energy transfer through ligands of complexes and decrease the value of these quantities for Eu complexes due to energy transfer from Eu(III) ions to ions of Yb, Tm, and Dy. For all interacting complexes, the changes in I lum and τ lum of complexes of Eu (Tb) in the presence of complexes, energy acceptors, are shown to be determined by competition between two processes: a decrease in these quantities due to energy transfer between ions and their increase caused by an increase in the probability of nonradiative transitions in Eu (Tb) ions due to an increase in the size of structures. We propose a method of separation of these two processes.  相似文献   

11.
Three kinds of europium complexes; Eu(phen)2Cl3(H2O)2, Eu(DN-bpy)phenCl3(H2O)2 and Eu(DB-bpy)phenCl3(H2O)2 (phen: 1,10-phenanthroline, DN-bpy: 4,4′-Dinonyl-2,2′-dipyridyl, DB-bpy: 4,4′-Di-tert-butyl-2,2′-dipyridyl) were prepared and then incorporated into polymethyl methacrylate (PMMA) matrix with different molar ratios of CO groups/Eu3+ ions. The final solid composites were formed by a self-assembly process among Eu3+ ion, the ligands and PMMA during the solvent evaporation process, and then the ligands re-coordinate to Eu(III). It was found that the ligands affect not only the emission properties of the pure complexes, but also the miscibility of the complexes and PMMA. More than one kind of symmetric sites of Eu3+ ions were formed in the composites due to the coordination of CO in PMMA to Eu3+ ions. The micro-environments of Eu(III) in the composites were changed with the compositions and the ligands, leading to the change in the crystalline structure, and consequently, the emission characteristics.  相似文献   

12.
A series of rare earth ternary compounds of Tb1−xEux(TTA)3Dipy (HTTA=thenoyltrifluoroacetone, Dipy=2,2′-dipyridyl) have been synthesized, and the characteristics of the compounds have been performed by DTA-TG, IR, UV and fluorescence spectroscopy. Photoluminescence measurements indicated that the complexes of Eu(III) emit strong red luminescence under UV radiation. IR spectra suggest that complexes have been successfully synthesized, and TG curves indicate that the complexes are stable up to a temperature of about 220 °C. The Eu complex was blended with poly(N-vinylcarbazole) (PVK) and spin coated into films, and electroluminescence devices with the structure of Indium Tin Oxide (ITO)/PVK:Tb1−xEux(TTA)3Dipy/BCP(2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline)/aluminum quinoline (AlQ)/Al were fabricated, the luminescence of Eu3+ complexes enhances after doping with Tb3+. Therefore, it may be an effective method to improve the EL intensity of the lanthanide complex.  相似文献   

13.
We have studied the sensitized fluorescence of coumarin 30 incorporated into nanoparticles from complexes of p-phenylbenzoyltrifluoroacetone and 1,10-phenanthroline with Y, La, Lu, Gd, Al, and Sc ions in 10% alcoholic-aqueous solutions. We have shown that, upon formation of nanoparticles from complexes of Y(III) and Ln(III) ions, coumarin 30 molecules are completely incorporated from the solution into nanoparticles from complexes up to dye concentrations in the solution comparable with the concentration complexes. For the nanoparticles under study, in the whole range of the examined dye concentrations, concentration quenching of the coumarin 30 cofluorescence has not been observed. Our results show that coumarin 30 is incorporated into lanthanide and yttrium complexes as a synergistic bidentate ligand. The possibility of creating brightly luminescent markers that absorb not only in the range of 360?C370 nm, but also in the range of 440?C450 nm, and have a narrow fluorescence spectrum with ??max = 520 nm has been demonstrated.  相似文献   

14.
Salicylic acid (SA) was first bonded onto the side chains of polystyrene (PS), obtaining functional macromolecule SAPS. Using the salicylic acid-containing polystyrene as a macromolecular ligand, a polymer–rare earth complex, SAPS–Eu(III), was prepared. The structure of SAPS–Eu(III) was characterized, and the fluorescence properties of SAPS–Eu(III) were mainly investigated. The experimental results show that the complex SAPS–Eu(III) has fine chemical stability because of the bidentate chelating effect of salicylic acid ligand. More important, the ligand SA on the side chains of PS can strongly sensitize the fluorescence emission of the center ion, Eu3+ ion, and it enables the complex SAPS–Eu(III) to produce the apparent “Antenna Effect”. In the diluted solution of the functional macromolecule SAPS, the formed complex SAPS–Eu(III) belongs to an intramolecular complex, or an intrachain complex. For the binary intramolecular complex SAPS–Eu(III), the apparent saturated coordination number of SA of SAPS towards Eu3+ ion is equal to 10, and here the binary intrachain complex SAPS–Eu(III) has the strongest fluorescence emission. On this basis, small-molecule 1,10-phenanthroline (Phen) acting as a co-ligand is added and the ternary complex SAPS–Eu(III)–Phen will be formed. As long as a small amount of Phen is added (in the molar ratio 1:1 (n(Phen):n(Eu))), the coordination of the two kinds of ligands, SA of SAPS and Phen, to Eu3+ ion will reach complete saturation, and here the fluorescence emission of the ternary complex will be further enhanced via the complementary coordination effect in comparison with that of the binary complex SAPS–Eu(III).  相似文献   

15.
Complexes Eu(TTA)3phen and Eu(MBTA)3phen, as well as complexes Tb(MBTA)3phen and Tb(TTA)3phen, which do not luminesce in solutions, are shown to luminesce in polymer films (TTA is thenoyltrifluoroacetone, MBTA is n-methoxybenzoyltrifluoroacetone, and phen is o-phenanthroline). Luminescence of complexes of Eu and Tb in films of a polymer, poly(methylene-bis-anthranilamide) 1,6-hexamethylenedicarboxylic acid (PAA-5), having a high concentration of functional anthranilate groups, is studied. From the behavior of the luminescence intensity (I lum), the luminescence decay time, and the luminescence spectra of complexes of these lanthanides in polymer films, the following regular features were revealed. (i) During the film preparation at 90°C, Ln complexes are attached to PAA-5 via anthranilate groups. (ii) Irradiation of these films in the range of the absorption band of ligands (TTA or MBTA) leads to deactivation of the electronic excitation of ions according to the diketone detachment mechanism and to further binding of complexes to polymers. In this case, I lum(Eu(III)) decreases because the introduction of anthranilate groups of the polymer into the first coordination sphere of Eu(III) complexes enhances the nonradiative deactivation of these ions, whereas I lum(Tb(III)) increases since the introduction of these groups suppresses the nonradiative deactivation of Tb complexes through triplet states of ligands (TTA and MBTA). (iii) Upon storage of films in the dark (20°C), complexes detach themselves from the polymer and return to their initial structure. In PAA-5 films into which Eu and Tb complexes were simultaneously introduced, the color of the emission from the irradiation spot changes from red to green.  相似文献   

16.
The effects of the concentration of a number of dyes in an aqueous solution and of the method of formation of mixed nanostructures of dyes and Eu(MBTA)3phen (MBTA is p-methoxybenzoyltrifluoroacetone; phen is 1,10-phenanthroline) complexes that form these structures on the luminescence decay kinetics of Eu(III) ions are studied. It is shown that, in the concentration range 5–50 nM of Nile blue, the concentration dependences of the luminescence decay and of the decrease in τ lum of Eu(III) nearly coincide and are nearly linear. The dependence of the ratio of I lum of Eu(III) to the intensity of the sensitized delayed fluorescence of Nile blue on the delay time of the probe pulse is analyzed; it is found that the majority of dye molecules incorporated in nanostructures of Eu(MBTA)3phen complexes emit sensitized delayed fluorescence with times 1–50 μs. Analysis of the effect of the structure of nanostructures on the quenching of I lum of Eu(III) by the dye at different concentrations of Eu(III) shows that nanostructures of Eu(MBTA)3phen and Eu(NTA)3phen (NTA is 2-naphthoyltrifluoroacetone) complexes appear in the aqueous solution at a concentration of Eu(III) of 0.1 μM (the MBTA or NTA concentration is 50 μM, and the concentration of phen is 17 μM) and exist in the solution at the Eu(III) concentrations up to ~5 μM. This confirms the conclusion on the occurrence range of nanostructures of Ln complexes previously made based on the analysis of columinescence in these structures.  相似文献   

17.
We have studied regular features of the fluorescence sensitization (cofluorescence) of coumarin 30 and rhodamine 6G introduced into nanoparticles from complexes Ln(PhBTA)3phen, where PhBTA is p-phenylbenzoyltrifluoroacetone and Ln is a triply charged Pr, Nd, Sm, Eu, Er, or Yb ion, which absorbs in the fluorescence range of ligands of complexes and dyes. We show that both the cofluorescence intensities (I cofl) of rhodamine 6G in nanoparticles from Sm and Eu complexes and the behavior of intensity I cofl on the content of rhodamine 6G coincide with the corresponding data obtained for nanoparticles from La and Lu complexes doped with rhodamine 6G molecules. A considerable decrease in I cofl of rhodamine 6G is observed only in nanoparticles from complexes Nd(PhBTA)3phen. In nanoparticles from Pr, Nd, Sm, Eu, Er, and Yb complexes doped with coumarin 30, it has been observed that, depending on the choice of the central ion, I cofl of coumarin 30 is 2 to 80 times lower compared to I cofl of the dye in nanoparticles from La and Lu complexes. A separate analysis of the influence of these ions on the energy transfer from complexes to coumarin 30 and on the fluorescence intensity of coumarin 30 incorporated into nanoparticles from these ions showed that a decrease in I cofl of coumarin 30 by a factor of 2?C20 occurs due to the reduction of ??fl of ligands of complexes under the influence of the interaction with Pr, Nd, Sm, Eu, Er, and Yb ions. Since ??fl of complexes La(PhBTA)3phen is ??2 ps, while that of complexes Gd(PhBTA)3phen is ??1 ps, then, in nanoparticles with a maximal decrease in I cofl of coumarin 30, ??fl of complexes is reduced to ??0.1 ps. It has been found that, in nanoparticles from complexes with this ??fl, energy migration over complexes takes place. However, as distinct from nanoparticles from La, Lu, and Y complexes, the free path length of singlet excitons in nanoparticles from complexes of absorbing ions is smaller than the nanoparticle size.  相似文献   

18.
We have studied the absorption spectra of complexes of trivalent ions Y, La, Lu, and Sc with p-phenylbenzoyltrifluoroacetone that were introduced into a solution of 90% H2O + 10% iso-C3H7OH in the absence and presence of either 1,10-phenanthroline or coumarins 6, 7, or 30. We have shown that these coumarins, as well as phenanthroline, are synergistic bidentate ligands that are incorporated into complexes up to concentrations comparable with concentrations of complexes and that stabilize them in the solution. We have studied the dependences of the fluorescence (cofluorescence) intensity (I cofl) of the coumarins on their concentration in nanoparticles from the complexes mentioned above. We have shown that, in nanoparticles from complexes of Y(III), Ln(III), and Sc(III), I cofl of coumarin 30 at high concentrations is higher than I cofl of coumarins 6 and 7. In addition, up to concentrations of coumarin 30 comparable with the concentration of complexes in nanoparticles, there is no concentration quenching of its fluorescence. For coumarins 6 and 7, which are prone to association in the solution under study, the process of incorporating coumarins into complexes competes with their association, which leads to concentration quenching and changes in the shape of their cofluorescence spectra.  相似文献   

19.
A series of Ln(III) complexes with pyridine carboxylic acid-N-oxides (L) Ln-L, and mixed ligand complexes of Ln-L plus bipyridine (bipy) or 1,10-phenanthroline (O-phen) (X) Ln-L-X have been studied. These complexes were characterized in solution using Nd(III) absorption in the spectral range of the 4I9/24G5/2 transition corresponding to the hypersensitive band, and in the solid state with the use of IR and Eu(III) luminescence spectroscopy. In solutions a series of Nd(III) complexes and mixed ligand complexes has been examined and the formation of binary LnL and LnL2 complexes and mixed ligand LnL2X complexes evidenced. Solid complexes of Eu(III) with nicotinic acid N-oxide and ternary with nicotinic acid N-oxide plus phen were studied with the use of Eu(III) luminescence lifetime measurements and IR spectroscopy, proving the formation of binary [Eu(nicN-oxide)3(H2O)2].2H2O and ternary [Eu(nicN-oxide)3phen].H2O complexes.  相似文献   

20.
Different phases of Eu3+ activated gadolinium oxide (Gd (OH)3, GdOOH and Gd2O3) nanorods have been prepared by the hydrothermal method with and without cityl trimethyl ammonium bromide (CTAB) surfactant. Cubic Gd2O3:Eu (8 mol%) red phosphor has been prepared by the dehydration of corresponding hydroxide Gd(OH)3:Eu after calcinations at 350 and 600 °C for 3 h, respectively. When Eu3+ ions were introduced into Gd(OH)3, lattice sites which replace the original Gd3+ ions, a strong red emission centered at 613 nm has been observed upon UV illumination, due to the intrinsic Eu3+ transition between 5D0 and 7F configurations. Thermoluminescence glow curves of Gd (OH)3: Eu and Gd2O3:Eu phosphors have been recorded by irradiating with gamma source (60CO) in the dose range 10-60 Gy at a heating rate of 6.7 °C sec−1. Well resolved glow peaks in the range 42-45, 67-76, 95-103 and 102-125 °C were observed. When γ-irradiation dose increased to 40 Gy, the glow peaks were reduced and with increase in γ-dose (50 and 60 Gy) results the shift in first two glow peak temperatures at about 20 °C and a new shouldered peak at 86 °C was observed. It is observed that there is a shift in glow peak temperatures and variation in intensity, which is mainly attributed to different phases of gadolinium oxide. The trapping parameters namely activation energy (E), order of kinetics (b) and frequency factor were calculated using peak shape and the results are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号