首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The kinetics and mechanism of the system: [FeL(OH)]2–n + 5 CN [Fe(CN)5(OH)]3– + Ln–, where L=DTPA or HEDTA, have been investigated at pH= 10.5±0.2, I=0.25 M and t=25±0.1 C.As in the reaction of [FeEDTA(OH)]2–, the formation of [Fe(CN)5(OH)]3– through the formation of mixed ligand complex intermediates of the type [FeL(OH)(CN)x]2–n–x, is proposed. The reactions were found to consist of three observable stages. The first involves the formation of [Fe(CN)5(OH)]3–, the second is the conversion of [Fe(CN)5(OH)]3– into [Fe(CN)6]3– and the third is the reduction of [Fe(CN)6]3– to [Fe(CN)6]4– by oxidation of Ln– The first reaction exhibits a variable order dependence on the concentration of cyanide, ranging from one at high cyanide concentration to three at low concentration. The transition between [FeL(OH)]2–n and [Fe(CN)5(OH)]3– is kinetically controlled by the presence of four cyanide ions around the central iron atom in the rate determining step. The second reaction shows first order dependence on the concentration of [Fe(CN)5(OH)]3– as well as on cyanide, while the third reaction follows overall second order kinetics; first order each in [Fe(CN)6]3– and Ln–, released in the reaction. The reaction rate is highly dependent on hydroxide ion concentration.The reverse reaction between [Fe(CN)5(OH)]3– and Ln– showed an inverse first order dependence on cyanide concentration along with first order dependence each on [Fe(CN)5– (OH)]3– and Ln–. A five step mechanism is proposed for the first stage of the above two systems.  相似文献   

2.
The nature of the diperiodatocuprate(III) (DPC) species present in aqueous alkaline medium has been investigated by a kinetic and mechanistic study on the oxidation of iodide by DPC. The reaction kinetics were studied over the 1.0 × 10–3–0.1 mol dm–3 alkali range. The reaction order with respect to DPC, as well as iodide, was found to be unity when [DPC] [I]. In the 1.0 × 10–3–1.0 × 10–2 mol dm–3 alkali region, the rate decreased with increase in the alkali concentration and a plot of the pseudo-first order rate constant, k versus 1/[OH] was linear. Above 5.0 × 10–2 mol dm–3, a plot of k versus [OH] was also linear with a non-zero intercept. An increase in ionic strength of the reaction mixtures showed no effect on k at low alkali concentrations, whereas at high concentrations an increase in ionic strength leads to an increase in k. A plot of 1/k versus [periodate] was linear with an intercept in both alkali ranges. Iodine was found to accelerate the reaction at the three different alkali concentrations employed. The observed results indicated the following equilibria for DPC.[Cu(H2IO6)2]3- [Cu(H2IO6)]- + H2IO6 3- [Cu(H2IO6)] + OH- [Cu(HIO6)]- + H2OA suitable mechanism has been proposed on the basis of these equilibria to account for the kinetic results.  相似文献   

3.
Summary The reactions of [Fe(bipym)3]2+ and [Ru(bipym)3]2+ with hydroxide ion in aqueous solution have been followed. The [Ru(bipym)3]2+ species undergoes nucleophilic attack at the ligand to yield [Ru(bipym)2(pyrimidine)(OH)]+ and [HCO2] ion, involving cleavage of one pyrimidyl ring. Intermediates can be observed in the reaction of [Fe(bipym)3]2+ with HO, N3 and SCN. The kinetics of the first reaction have been followed and the results are compared with those known for the reactions of [Fe(bipy)3]2+, [Fe(phen)3]2+ and similar compounds.Part XXIII: P. A. Williams,Transition Met. Chem., 78/84.  相似文献   

4.
Summary The kinetics and mechanism of exchange of HPDTA in [Fe2HPDTA(OH)2] with cyanide ion (HPDTA=2-hydroxytrimethylenediaminetetraacetic acid) was investigated spectrophotometrically by monitoring the peak at 395 nm ( max of [Fe(CN)5OH]3– at pH=11.0±0.02,I=0.25m (NaClO4) at ±0.1°C).Three distinct observable stages were identified; the first is the formation of [Fe(CN)5OH]3–, the second the formation of [Fe(CN)6]3– from it and the third the reduction of [Fe(CN)6]3– to [Fe(CN)6]4– by HPDTA4– released in the first stage.The first stage follows first-order kinetics in [Fe2HPDTA(OH)2] and second-order in [CN] over a wide range of [CN], but becomes zero order at [CN]<5×10–2 m. We suggest a cyanide-independent dissociation of [Fe2HPDTA)(OH)2] into [FeHPDTA(OH)] and [Fe(OH)]2+ at low cyanide concentrations and a cyanide-assisted rapid dissociation of [Fe2HPDTA(OH)2] to [FeHPDTA(OH)(CN)]3– and [Fe(OH)]2+ at higher cyanide concentrations. The excess of cyanide reacts further with [FeHPDTA(OH)(CN)]3– finally to form [Fe(CN)5OH]3–.The reverse reaction between [Fe(CN)5OH]3– and HPDTA4– is first-order in [Fe(CN)5OH]3– and HPDTA4–, and exhibits inverse first-order dependence on cyanide concentration.A six-step mechanism is proposed for the first stage of reaction, with the fifth step as rate determining.  相似文献   

5.
Fe(CO)5 is sufficiently stable at 80 °C in benzene solution and its thermal decomposition is not accelerated in the presence of phenyl cinnamate or/and DMF. The decomposition is accelerated by CCl3Br (drastically) and by CCl4 (to a lesser extent). DMF accelerates the reaction of Fe(CO)5 with CCl4. The (FeCl(DMF)5]2+[Cl3FeOFeCl3]2– complex has been isolated as a product; its composition and structure have been determined by X-ray analysis. The obtained data indicate the absence of coordination of DMF or/and an olefin with Fe0 species at the stage preceding oxidation. The mechanisms of the generation of CCl3 radicals in thermal and photochemical Kharash reactions in the presence of Fe(CO)5 are basically different. The probable pathways of the effect of DMF on the rate of the oxidative decomposition of Fe(CO)5 are discussed.For Part 2, see Ref. 1.Translated from IzvestiyaAkademii Nauk. Seriya Khimicheskaya, No. 4, pp. 916–919, April, 1996.  相似文献   

6.
Summary The kinetics of reaction of HO with [Ru(TPT)2]2+ and [Fe(TPT)2]2+ have been studied in detail. The former participates in an equilibrium with HO yielding a pseudo-base by attack at the ligand and, at very high concentrations of HO, dissociates to yield pure TPT quantitatively. [Fe(TPT)2]2+ dissociates rapidly in basic solution, even at 273 K, however, [Fe(TPT)(TPT · OH)]+ does in fact exist and the Fell and Rull reactions are quite similar, although that of Fell is much faster. The implications of these findings for the dissociation of [Fe(TPT)2]2+ over a wide range of pH are discussed.Patt XX, ref. 1.  相似文献   

7.
Summary The kinetics and mechanism of the reaction between [Fe2L(OH)2]2– and cyanide ion (L = TTHA, triethylenetetraaminehexaacetate) have been studied spectrophotometrically atpH=11.0±0.1,I=0.1 M(NaClO4) and T = 25±0.1 °C. The overall reaction consists of three distinct, observable stages. The first stage involves the dissociation of the binuclear complex into a mononuclear complex [FeL(OH)]4– which then reacts with cyanide to form [Fe(CN)5OH]3–. The species [Fe(CN)5OH]3– reacts further with an excess of cyanide and forms [Fe(CN)6]3– in the second stage of reaction. The last stage involves the reduction of [Fe(CN)6]3– formed in the second stage by the TTHA6– released in the first stage of reaction. The formation of [Fe(CN)5OH]3– in the first stage is firstorder in [Fe2L(OH)2]2– and third-order in cyanide over a large range of cyanide concentrations but becomes zero-order in cyanide at [CN] < 4×10–2M.These observations enable us to suggest the presence of a slow step in which [Fe2L(OH)2]2– dissociates into [FeL(OH)]4– and [FeOH]2+ at low cyanide concentrations and a cyanide assisted rapid dissociation of [Fe2L(OH)2]2– to [FeL(OH)(CN)]5– at higher cyanide concentrations. The species [FeL(OH)(CN)]5– reacts further with an excess of cyanide to produce [Fe(CN)5OH]3– finally.The reverse reaction between [Fe(CN)5OH]3– and TTHA6– follows first-order dependence in each of [Fe(CN)5OH]3– and TTHA6– and inverse first-order dependence on cyanide concentration. A six-step mechanism has been proposed for the first stage of reaction in which the fifth has been identified as the rate-determining step.  相似文献   

8.
The rate of the reaction 2Fe(CN) 6 4– +S 2 O 8 2– 2Fe(CN) 6 3– + 2SO 4 2– in the presence of Group IIA cations in aqueous solution has been studied over the range of ionic strength from 0.006 to 0.20 M at three temperatures between 5 and 35°C. The results are interpreted by means of the Brønsted(2) equation, and it is concluded that the actual reacting species are MFe(CN) 6 2– , and S2O 8 2– , where M is a Goup IIA metal. The contribution from the nonion-paired species seems to be negligibly small. Rate constants and activation parameters are reported for the observed reaction pathway, and these are compared with those for the same reaction carried out in the presence of alkali metal cations. The results are considered in terms of a mechanism involving cation bridging, and qualitatively this model is consistent with the trends in the results.  相似文献   

9.
The kinetics of oxidation of AsIIIby Fe(CN)6 3– has been studied spectrophotometrically in 60% AcOH–H2O containing 4.0moldm–3HCl. The oxidation is made possible by the difference in redox potentials. The reaction is first order each in [Fe(CN)6 3–] and [AsIII]. Amongst the initially added products, Fe(CN)6 4– retards the reaction and AsVdoes not. Increasing the acid concentration at constant chloride concentration accelerates the reaction. At constant acidity increasing chloride concentration increases the reaction rate, which reaches a maximum and then decreases. H2Fe(CN)6 , is the active species of Fe(CN)6 3–, while AsCl5 2– in an ascending portion and AsCl2 + in a descending portion are considered to be the active species of AsIII. A suitable reaction mechanism is proposed and the reaction constants of the different steps involved have been evaluated.  相似文献   

10.
The reaction between KI and [Fe(CN)6]3– ion, catalysed by hydrogen ions, was found to be catalysed further by PdCl2. Separate reactions under similar conditions, studied in the absence as well as in the presence of PdCl2 catalyst, were found to follow first order kinetics w.r. to [Fe(CN)6]3– and [H+], while the order was two w.r. to [I]. [Fe(CN)6]4– ions were found to have a negative effect while changes in ionic strength of the medium do not effect the reaction velocity. Reaction in the presence of PdCl2 showed direct proportionality w.r. to [PdCl2]. The rate and extent of the reaction, which takes place even at zero [PdCl2] in the co-catalysed reaction, was calculated and was found to be in accordance with the rate values of the separately studied reaction at similar concentrations without adding PdCl2.  相似文献   

11.
The kinetics of RuIII catalyzed reduction of hexacyanoferrate(III) [Fe(CN)6]3–, by atenolol in alkaline medium at constant ionic strength (0.80 mol dm–3) has been studied spectrophotometrically, using a rapid kinetic accessory. The reaction between atenolol and [Fe(CN)6]3– in alkaline medium exhibits 1:2 stoichiometry [atenolol:Fe(CN)6 3–]. The reaction showed first order kinetics in [Fe(CN)6]3– concentration and apparent less than unit order dependence, each in atenolol and alkali concentrations. Effect of added products, ionic strength and dielectric constant of the reaction medium have been investigated. A retarding effect was observed by one of the products i.e., hexacyanoferrate(II). The main products were identified by i.r., n.m.r., fluorimetric and mass spectral studies. A mechanism involving the formation of a complex between the atenolol and the hydroxylated species of ruthenium(III) has been proposed. The active species of oxidant and catalyst were [Fe(CN)6]3–and [Ru (H2O)5OH]2+, respectively. The reaction constants involved in the mechanism were evaluated. The activation parameters were computed with respect to the slow step of the mechanism, and discussed.  相似文献   

12.
Comparative analysis of the oxidizing and complexing properties of the DMSO–HX (X = Cl, Br, I) and DMSO–HX–ketone (X = Br, I; the ketone is acetone, acetylacetone, or acetophenone) systems toward silver was performed. The reaction products are AgX (X = Cl, Br, I), [Me3S+]Ag n X m (n= 1, 2; m= 2, 3; X = Br, I) and [Me2S+CH2COR]AgX 2(R = Me, Ph; X = Br, I). The composition of the obtained complexes depends on both the DMSO : HX ratio and the nature of HX, as well as on the methods used to isolate solid products from the solution. It was noted that the formation of the [Me2S+CH2COMe]AgBr 2complex in the Ag0–DMSO–HBr–acetylacetone system occurs with cleavage of the acetylacetone C–C bond and follows a specific reaction course. The optimum conditions for production of the silver compounds in the title systems are determined.  相似文献   

13.
The rate of the reaction Fe(CN) 6 4– +W(CN) 8 3– Fe(CN) 6 3– +W(CN) 8 4– in aqueous solution has been studied at various temperatures and ionic strengths, in the presence of Group IA cations. The results, combined with earlier work on the ion pairing of these compounds, give an indication of the number of cations present in the activated complex, a number which increases steadily in going from Li+ to Cs+ as the associated cations. Activation parameters for the reaction at various total [M+] are also evaluated.  相似文献   

14.
It was found that VO2+, Fe3+, Co2+, and Cu2+ ions catalyze the reaction of O3 with Cl- in an acidic medium. The dependence of the rate of Cl2 liberation in the reaction of O3 with Cl- on the concentrations of H+, VO2+, Fe3+, Co2+, and Cu2+ ions in the reaction solution was studied. A reaction scheme was proposed to explain the experimentally found catalytic effects of these ions. The constants that characterize the steps of the proposed scheme were determined.Translated from Kinetika i Kataliz, Vol. 46, No. 1, 2005, pp. 147–152. Original Russian Text Copyright © 2005 by Levanov, Kuskov, Koiaidarova, Zosimov, Antipenko, Lunin.  相似文献   

15.
Oxidation of aqueous Fe(II) was investigated at circumneutral pH and 23°C in the absence of ligands (other than H2O, OH, and Cl) and catalysts (e.g., microbes or solids surfaces). Enzymes (superoxide dismutase and catalase) were used as specific catalytic probes to determine whether superoxide and hydrogen peroxide are intermediates in oxygen reduction by Fe(II). The kinetic evidence suggests that Fe(II) and D.O. react in a termolecular transition state complex, the reaction produces hydrogen peroxide (probably without intermediation by superoxide), and Fe(II) and H2O2 react in a termolecular reaction or in a two-step sequence of bimolecular reactions. The rate data permit modeling the overall Fe(II) oxidation reaction at pH7.0 with a rate law that has non-integer orders with respect to [Fe(II)] and [OH].  相似文献   

16.
When an aqueous solution of Na2[Mo(V)2O4EDTA] (ethylene diamine tetraacetate) was photolyzed in the presence of excess KBr and K2S2O8 at neutral pH, the complex was found to be oxidized due to the reactions of Br 2 –. and SO 4 –. , respectively. Oxidation of the complex was also observed due to the reactions of the complex with radiolytically generated Br 2 –. and SO 4 –. radicals. When the oxidation of the complex with SO 4 –. was conducted in an unbuffered solution, a chain reaction was observed in the oxidation of the complex. The time resolved kinetics for the formation and decay of different transient intermediates and the relevant rate constants were investigated with a flash photolysis technique, and a probable mechanism for the oxidation process was given.  相似文献   

17.
Summary The kinetics and mechanism of the system [FeHIDA-(OH)2]+5CN[Fe(CN)5OH+HIDA2–+OH (HIDA=N-(2-hydroxyethyl) (iminodiacetate) at pH=9.5±0.02, I=0.1 M and at 25±0.1°C have been studied spectrophotometrically at 395 nm ( max of [Fe(CN)5OH]3–]. The reaction has three distinguishable stages; the first is formation of [Fe(CN)5OH]3–, the second is conversion of [Fe(CN)5OH]3– into [Fe(CN)6]3–, and last is the reduction of [Fe(CN)6]3– to [Fe(CN)6]4– by the HIDA2– released in the first stage. The first stage shows variable-order dependence on cyanide concentration, unity at high cyanide concentration and zero at low cyanide concentration. The second stage exhibits first-order dependence on the concentration of [Fe(CN)5OH]3– as well as on cyanide. The reverse reaction between [Fe(CN)5OH]3– and HIDA2– is first-order in each of these species and inverse first-order in cyanide. On the basis of forward and reverse rate studies, a five-step mechanism has been proposed for the first stage. The first step involves a slow loss of one OH, by a cyanide-independent path.  相似文献   

18.
Summary The natural decay of Fe(phen) f3 p3&#x002b; , where no CeIV is employed for scavenging the side reaction product, Fe(phen) f3 p2+ , is now treated as a complex reaction involving two parallel processes, and the experimental kinetics are consistent with the rate laws derived from a mechanism that simultaneously explains the composition of the products as a function of acidity. In terms of the proposed mechanism the dissociation rate of the complex ion in acid solutions containing CeIV as scavenging agent is to be regarded as a CeIV retarded aquation rate, and OH is to be assigned a catalytic role in the kinetics of basic reduction.  相似文献   

19.
Summary A kinetic study of the anaerobic oxidation of cysteine (H2 L) by iron(III) has been performed over thepH-range 2.5 to 12 by use of a stopped-flow high speed spectrophotometric method. Reaction is always preceded by complex formation. Three such reactive complex species have been characterized spectrophotometrically: FeL + (max=614 nm, =2 820 M–1cm–1); Fe(OH)L (max=503 nm; shoulder at 575 nm, =1 640 M–1cm–1); Fe(OH)L 2 2– (max=545 nm; shoulder at 445 nm, =3 175 M–1 cm–1). Formation constants have been evaluated from the kinetic data: Fe3++L 2– FeL +: logK 1 M =13.70±0.05; Fe(OH)2++L 2– Fe(OH)L: logK 1 MOH =10.75±0.02; Fe(OH)L+L 2– Fe(OH)L 2 2– ; logK 2 MOH =4.76±0.02. Furthermore the hydrolysis constant for iron(III) was also obtained: Fe(OH)2++H+ Fe aq 3+ : logK FeOH=2.82±0.02). Formation of the mono-cysteine complexes, FeL + and Fe(OH)L, is via initial reaction of Fe(OH)2+ with H2 L (k=1.14·104M–1s–1), the final product depending on thepH. FeL + (blue) formed at lowpH decomposes following protonation with a second-order rate constant of 1.08·105M–1s–1. Fe(OH)L (purple) decomposes with an apparent third order rate constant ofk=3.52·109M–2s–1 via 2 Fe(OH)L+H+ products, which implies that the actual (bimolecular) reaction involves initial dimer formation. Finally, Fe(OH)L 2 2– (purple) is remarkably stable and requires the presence of Fe(OH)L for electron transfer. A rate constant of 8.36·103M–1s–1 for the reaction between Fe(OH)L and Fe(OH)L 2 2– is evaluated.Dedicated to Prof. Dr. mult. Viktor Gutmann on the occasion of his 70th birthday  相似文献   

20.
Summary The reaction between bis(2,4,6-tripyridyl-1,3,5-triazine)-iron(II), Fe(TPTZ) inf2 sup2+ and chromium(VI) in acetate buffers is very slow. However, in the presence of oxalic acid (catalyst) it is very fast and is completed within 10s. The reaction was studied in the 3.6–5.6 pH range using stopped-flow spectrophotometry. The reaction is first order in the substrate and zero order in the oxidant. The rate of the reaction increases with the increase in pH. Kinetic evidence for complexation between the substrate and the catalyst was obtained and a mechanism involving the formation of an ion-pair between Fe(TPTZ) inf2 sup2+ and the oxalate ion is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号