首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Self-assembled monolayers (SAMs) formed from semifluorinated dialkyldiselenol (CF(3)(CF(2))(5)(CH(2))(2)Se-)(2) (F6H2SeSeH2F6) on polycrystalline Au(111) and Ag(111) were characterized by high-resolution X-ray photoelectron spectroscopy, infrared reflection absorption spectroscopy, near edge X-ray absorption fine structure spectroscopy, scanning tunneling microscopy, and contact angle measurements. The Se-Se linkage of F6H2SeSeH2F6 was found to be cleaved upon the adsorption, followed by the formation of selenolate-metal bond. The resulting F6H2Se SAMs are well-ordered, densely packed, and contamination-free. The packing density of these films is governed by the bulky fluorocarbon part, which exhibits the expected helical conformation. A noncommensurate hexagonal arrangement of the F6H2Se molecules with an average nearest-neighbor spacing of about 5.8 +/- 0.2 A, close to the van der Waals diameter the fluorocarbon chain, was observed on Au(111). The orientation of the fluorocarbon chains in the F6H2Se SAMs does not depend on the substrate-the average tilt angle of these moieties was estimated to be about 21-22 degrees on both Au and Ag.  相似文献   

2.
《Supramolecular Science》1997,4(1-2):59-65
The formation and structure of alkyltrichlorosilanes on several types of SrTiO3 substrates have been studied. The silanes adsorb spontaneously from a hexadecane solution and form monolayers on all the substrates used. Characterization has been performed by atomic force microscopy, wettability, angle resolved X-ray photoelectron spectroscopy, reflection absorption infrared spectroscopy, and spectroscopic ellipsometry. It was found that highly ordered and densely packed monolayers were formed below a certain temperature.  相似文献   

3.
In this paper we describe the formation and characterization of self-assembled monolayers of octadecylphosphonic acid (ODPA) on epitaxial (0001) GaN films on sapphire. By immersing the substrate in its toluene solution, ODPA strongly adsorbed onto UV/O 3-treated GaN to give a hydrophobic surface. Spectroscopic ellipsometry verified the formation of a well-packed monolayer of ODPA on the GaN substrate. In contrast, adsorption of other primarily substituted hydrocarbons (C n H 2 n+1 X; n = 16-18; X = -COOH, -NH 2, -SH, and -OH) offered less hydrophobic surfaces, reflecting their weaker interaction with the GaN substrate surfaces. A UV/O 3-treated N-polar GaN had a high affinity to the -COOH group in addition to ODPA, possibly reflecting the basic properties of the surface. These observations suggested that the molecular adsorption was primarily based on hydrogen bond interactions between the surface oxide layer on the GaN substrate and the polar functional groups of the molecules. The as-prepared ODPA monolayers were desorbed from the GaN substrates by soaking in an aqueous solution, particularly in a basic solution. However, ODPA monolayers heated at 160 degrees C exhibited suppressed desorption in acidic and neutral aqueous solution maybe due to covalent bond formation between ODPA and the surface. X-ray photoelectron spectroscopy provided insight into the effect of the UV/O 3 treatment on the surface composition of the GaN substrate and also the ODPA monolayer formation. These results demonstrate that the surface of a GaN substrate can be tailored with organic molecules having an alkylphosphonic acid moiety for future sensor and device applications.  相似文献   

4.
Self-assembled monolayers (SAMs) formed from 4'-substituted 4-mercaptobiphenyls X-(C6H4)2SH (X-BPT, with X = I, Cl, and F) on polycrystalline (111) gold and silver substrates have been characterized by synchrotron-based high-resolution X-ray photoelectron spectroscopy and angle-resolved near-edge X-ray absorption fine structure spectroscopy. The X-BPT molecules were found to form highly oriented and densely packed SAMs on both substrates, with a smaller molecular inclination in the case of Ag. The experimental data show clear evidence for the charge transfer between the 4'-substituent and biphenyl moieties with the direction and extent of the transfer depending on the electronegativity of the halogen substituent. At the same time, no direct evidence of the charge transfer between the 4'-substituent and the thiolate group was observed. However, the substitution of the 4'-hydrogen by a halogen atom seems to affect the detailed packing arrangements of the SAM constituents.  相似文献   

5.
Neutral organic compounds, dissolved in an electrolyte in contact with an electrode, adsorb and form different monolayers which may range from dilute to compact films. In some instances, non-electroactive organic molecules are highly associated and form 2D condensed phases which are characterized by the presence of phase transitions. The occurence of these self-assembled monolayers is discussed on the basis of experimental results obtained at equilibrium as well as under dynamic conditions. Self-assembling depends on the relative magnitude of the interactions involving the surfactant, the solvent and the electrode. Adequate potential-step programmes have been successfully used to trigger the formation of the ordered phase. It is found that the kinetics are controlled by a nucleation and growth mechanism. According to the experimental conditions, a deterministic or stochastic behaviour is observed. The amplitude of the supersaturation, given by the surface free energy gap between the final and metastable states, is independently controlled by the potential, temperature and surfactant concentration. The classical nucleation theory allows the determination of key parameters such as the line tension, the radius and free energy of formation of the critical nucleus. Ion and electron transfer processes through condensed monolayers are also briefly described.  相似文献   

6.
Parallel-displaced pi-pi stacking interactions have been known to be the dominant force in stabilizing the double helical structure of DNA and the tertiary structure of proteins. However, little is known about their roles in self-assembled monolayers of other large pi molecules such as aromatic thiols. Here we report on a systematic study of the self-assembled monolayers of four kinds of anthracene-based thiols, 9-mercaptoanthracene (MA), (4-mercaptophenyl) (9-anthryl) acetylene (MPAA), (4-mercaptophenyl) (10-nitro-9-anthryl) acetylene (MPNAA), and (4-mercaptophenyl) (10-carboxyl-9-anthryl) acetylene (MPCAA) on Au(111), in which a spacer and different functional groups (NO2 and COOH) are intentionally designed to introduce and thus allow the investigation of various intermolecular interactions, in addition to pi-pi interactions in the base molecules. We find that all molecules form long-range-ordered monolayers and, more interestingly, that these assembled monolayers exhibit essentially the same fundamental packing structure. On the basis of high-resolution scanning tunneling microscopy observations, we propose the space-filling models for the observed superstructures and demonstrate that all superstructures can be understood in terms of the parallel-displaced pi-pi stacking interactions, despite the presence of competing dipole-dipole and H-bonding interactions associated with these specially designed functional groups.  相似文献   

7.
Long chain alkanethiols self-assembled monolayers (SAMs) formed on Au microelectrodes showed higher sensitivity towards defects than the same monolayers on macroelectrodes. The analysis of cyclic voltammetry and electrochemical impedance spectroscopy (EIS) experiments performed on covered microelectrodes were consistent with the formation of pinholes of about 10 nm in diameter. Moreover, the EIS data exhibited a specific behavior that was interpreted invoking the short circuiting of the pinholes impedance by the surrounding surface of the microelectrode in the high frequency domain, whereas in the low frequencies, the surface covered by the SAM was assume to act as an insulator.  相似文献   

8.
We have studied the interaction of vapor-deposited Al, Cu, Ag, and Au atoms on a methoxy-terminated self-assembled monolayer (SAM) of HS(CH(2))(16)OCH(3) on polycrystalline Au[111]. Time-of-flight secondary ion mass spectrometry, infrared reflection spectroscopy, and X-ray photoelectron spectroscopy measurements at increasing coverages of metal show that for Cu and Ag deposition at all coverages the metal atoms continuously partition into competitive pathways: penetration through the SAM to the S/substrate interface and solvation-like interaction with the -OCH(3) terminal groups. Deposited Au atoms, however, undergo only continuous penetration, even at high coverages, leaving the SAM "floating" on the Au surface. These results contrast with earlier investigations of Al deposition on a methyl-terminated SAM where metal atom penetration to the Au/S interface ceases abruptly after a approximately 1:1 Al/Au layer has been attained. These observations are interpreted in terms of a thermally activated penetration mechanism involving dynamic formation of diffusion channels in the SAM via hopping of alkanethiolate-metal (RSM-) moieties across the surface. Using supporting quantum chemical calculations, we rationalized the results in terms of the relative heights of the hopping barriers, RSAl > RSAg, RSCu > RSAu, and the magnitudes of the metal-OCH(3) solvation energies.  相似文献   

9.
10.
11.
The preparation and characterization of self-assembled monolayers on copper with n-alkyl and functional thiols was investigated. Well-ordered monolayers were obtained, while the copper remained oxide-free. Direct attachment of N-succinimidyl mercaptoundecanoate (NHS-MUA) onto the copper surface allowed for the successful attachment of biomolecules, such as β-d-glucosamine, the tripeptide glutathione, and biotin. Notably, the copper surfaces remained oxide-free even after two reaction steps. All monolayers were characterized by static water contact angle measurements, X-ray photoelectron spectroscopy, and infrared reflection absorption spectroscopy. In addition, the biotinylated copper surfaces were employed in the immobilization of biomolecules such as streptavidin.  相似文献   

12.
The adsorption of benzene, pyridine, and two nucleobases on the Au(111) surface has been investigated using a fully relaxed, self-consistent meta-generalized gradient approximation (meta-GGA) density functional theory setup with the M06-L functional. The meta-GGA based molecule-surface separations are shortened and the adsorption bond strengths of the molecules are greatly improved over the virtually non-interacting results obtained when using a plain GGA exchange-correlation functional. The nucleobases containing oxygen atoms show higher corrugation with adsorption site and orientation than the other aromatic molecules considered. The adsorption of pentacene is studied on Au, Ag, and Cu surfaces. In agreement with experiment, the adsorption energies are found to increase with decreasing nobleness, but the dependency is underestimated. We point out how the kinetic energy density can discriminate between covalent and non-covalent bonding regions of orbital overlap.  相似文献   

13.
Homogeneous and mixed [with biphenylthiol (BPT)] self-assembled monolayers (SAMs) of ferrocene-substituted biphenyl ethynyl thiols (Fc) were prepared on Au(111) substrates and characterized by several complementary spectroscopic techniques. The mixed films were fabricated either by subsequent immersion of the substrates into the BPT and Fc solutions or by immersion of the substrate into a mixed solution of BPT and Fc. The first procedure resulted in the preparation of high-quality mixed SAMs, in which the Fc molecules were stochastically distributed in the BPT matrix and well-separated from each other. The portion of these molecules in such films could be precisely varied from ca. 7 to 42% by selection of the immersion time in the BPT solution. The films prepared from the mixed solution exhibited a phase separation between the Fc and BPT constituents. These films contained mostly the Fc molecules ( approximately 80-90%), showing, thus, a significant deviation from the relative content of the target molecules in the primary solution (a 1:1 ratio). This finding shows that the Fc molecules, when competing with BPT, preferably adsorb onto Au(111) substrate, suggesting a significant impact of the ferrocene groups onto the structure-building interactions responsible for molecular self-assembly.  相似文献   

14.
In this paper, we propose two new approaches for preparing active substrates for surface-enhanced Raman scattering (SERS). In the first approach (method 1), one transfers AgI nanoparticles capped by negatively charged mercaptoacetic acid from a AgI colloid solution onto a quartz slide and then deoxidizes AgI to Ag nanoparticles on the substrate. The second approach (method 2) deoxidizes AgI to Ag nanoparticles in a colloid solution and then transfers the Ag nanoparticles capped by negatively charged mercaptoacetic acid onto a quartz slide. By transfer of the AgI/Ag nanoparticles from the colloid solutions to the solid substrates, the problem of instability of the colloid solutions can largely be overcome. The films thus prepared by both approaches retain the merits of metal colloid solutions while they discharge their shortcomings. Accordingly, the obtained Ag particle films are very suitable as SERS active substrates. SERS active substrates with different coverages can be formed in a layer-by-layer electrostatic assembly by exposing positively charged surfaces to the colloid solutions containing oppositely charged AgI/Ag nanoparticles. The SERS active substrates fabricated by the two novel methods have been characterized by means of atomic force microscopy (AFM) and ultraviolet-visible (UV-vis) spectroscopy. The results of AFM and UV-vis spectroscopy show that the Ag nanoparticles grow with the increase in the number of coverage and that most of them remain isolated even at high coverages. Consequently, the surface optical properties are dominated by the absorption due to the isolated Ag nanoparticles. The relationship between SERS intensity and surface morphology of the new active substrates has been investigated for Rhodamine 6G (R6G) adsorbed on them. It has been found that the SERS enhancement depends on the size and aggregation of the Ag particles on the substrates. Especially, we can obtain a stronger SERS signal from the substrate prepared by method 1, implying that for the metal nanoparticles capped with stabilizer molecules such as mercaptoacetic acid, the in situ deoxidization in the film is of great use in preparing SERS active substrates. Furthermore, we have found that the addition of Cl- into the AgI colloid solution changes the surface morphology of the SERS active substrates and favors stronger SERS enhancement.  相似文献   

15.
16.
The catalytic effects of a submonolayer of lead on noble metals have been shown and discussed in terms of a previously published model. A theoretical analysis of these effects is presented. It was demonstrated that foreign metal monolayers allow a determination of the true catalytic activity of electrodes in the case of self-poisoning reactions. A volcano-shaped curve for oxidation of formic acid on noble metal electrodes was obtained.  相似文献   

17.
The self-assembly of long-alkyl-chain substituted phenanthroline derivatives on highly oriented pyrolitic graphite (HOPG) and gold(111) is compared. Whereas the adsorption on HOPG is controlled by the affinity of alkyl chains for the substrate, which leads to flat-lying adsorbed molecules, alignments of upright-oriented molecules are formed on gold(111). This situation is explained by the bonding of chelating species with gold(111) surfaces and by the pi-stacking interaction between conjugated moieties. This intermediate situation between strong thiol-like chemical bonding and the weak n-alkane-like physical adsorption opens the route toward laterally organized functional molecular assemblies.  相似文献   

18.
Self-assembled monolayers (SAMs) of alkylthiol on metals, especially on gold, with photo-functionalities, such as photo-induced electron transfer, control of photo-electrochemical properties, control of electron transfer by photoisomerization, luminescence, and photo-patterning, are reviewed.  相似文献   

19.
Recent efforts to understand the interaction of large aromatic molecules with metal surfaces are discussed. We focus exclusively on work involving the model molecule 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) and the noble metal surfaces of Cu, Ag, and Au. Using this material system as an example, salient features of the (chemical) bond between an extended π-conjugated electron system and a metallic substrate are illustrated. Interface structures are a valuable indicator of the metal–molecule interaction strength. Consistent with the trend observed for small molecule adsorption, they indicate that the interaction strength of PTCDA with the metal substrate decreases in the order Cu–Ag–Au. The interfaces of PTCDA with the Au(1 1 1) and Ag(1 1 1) surfaces have been studied in particular detail. The interaction of Au(1 1 1) with PTCDA is weak, leading to point-on-line coincidence between the lattices of the substrate and the molecular overlayer. Experimental results on this surface are generally consistent with a predominantly physisorptive bonding of PTCDA. The situation is different on Ag surfaces, and in particular on Ag(1 1 1), where clear signs of PTCDA chemisorption are observed in many ensemble averaging and single molecule spectroscopies. Issues of electronic and geometric structure as well as electron–vibron interaction, and their relation to the chemical molecule–substrate interaction, are discussed in detail.  相似文献   

20.
This paper describes microcontact printing (muCP) of long-chain alkanethiolates on palladium, followed by solution-phase etching with an iron(III)-based etchant, to make patterned structures. The commonly used soft-lithographic procedure for fabricating microstructures-muCP of SAMs on gold-has three shortcomings: a significant surface density of pinhole defects, substantial edge roughness, and incompatibility with processes used in CMOS fabrication. Microcontact printing on palladium gives fewer defects and smaller edge roughness than on gold, and is compatible with CMOS. The mechanism by which etch-resistant patterns are formed is different for palladium and gold. The Pd/S interfacial layer formed by the reaction of palladium films with sulfur-containing compounds provides good resistance to etches independently of the barrier to access the surface provided by the film of (CH2)n groups in the long-chain SAMs. This barrier is the basis of the etch resistance of SAMs on gold, but only supplements the etch resistance of the sulfur-containing interfacial layer on palladium. Characterization of the SAM formed from hexadecanethiol on palladium is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号