首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rapid, sensitive and selective liquid chromatography/tandem mass spectrometry method (LC‐MS/MS) was developed and validated for simultaneous determination of albiflorin and paeoniflorin in rat plasma using geniposide as an internal standard. Plasma samples were extracted by solid‐phase extraction. Chromatographic separation was carried out on a Zorbax SB‐C18 analytical column (150 × 2.1 mm × 5 µm) with 0.1% formic acid–acetonitrile (70:30, v/v) as the mobile phase. Detection was performed by multiple reaction monitoring mode using electrospray ionization in the positive ion mode. The total run time was 3.0 min between injections. The calibration curves were linear over a range of 1–1000 ng/mL for albiflorin and 2–2000 ng/mL for paeoniflorin. The overall precision and accuracy for all concentrations of quality controls and standards were better than 15%. Mean recovery was determined to be 87.7% for albiflorin and 88.8% for paeoniflorin. The validated method was successfully applied to the pharmacokinetic study of albiflorin and paeoniflorin in rat plasma after oral administration of Radix Paeoniae Alba extract and Tang‐Min‐Ling‐Wan. The pharmacokinetic parameters showed that albiflorin and paeoniflorin from Tang‐Min‐Ling‐Wan were absorbed more rapidly with higher concentrations in plasma than that from Radix Paeoniae Alba extract. The results provided a meaningful basis for evaluating the clinical applications of traditional Chinese medicine. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
A high-performance liquid chromatography method with solid-phase extraction is introduced for the determination of geniposide in rat urine after oral administration of yin-zhi-ku decoction. Geniposide and an internal standard (paeoniflorin) are extracted from urine using Strata cartridges. Analysis of the extract is then performed on a reversed-phase C18 column using acetonitrile-water (14:86, v/v) as eluting solvent system. UV detection is set at 238 nm. The calibration curve for geniposide is linear (r = 0.9996) in the concentration range of 2.0-240 microg/mL. Both intra- and interday precision of the geniposide are determined, and their relative standard deviation does not exceed 10%. The validated method is successfully applied to determine geniposide from rat urine after oral administration of yin-zhi-ku decoction.  相似文献   

3.
A new HPLC method for the determination of geniposide in rat serum with solid-phase extraction (SPE) for preconcentration is described. Geniposide and an internal standard (paeoniflorin) were extracted from serum by SPE using C18 cartridges. Analysis of the extract was then performed on a reversed-phase C18 column using acetonitrile-water (16:84, v/v) as the eluting solvent system, and UV detection at 238 nm was used to measure the analyte with a limit of quantitation about 0.1 microg/mL. The calibration curve for geniposide was linear (r = 0.9993) in the concentration range 0.1-16.0 microg/mL. The intra- and inter-day precision of the geniposide were determined and their RSD did not exceed 10%. The validated method has been successfully applied for pharmacokinetic studies of geniposide from rat serum after oral administration of Yin-Zhi-Ku decoction.  相似文献   

4.
A reversed-phase high-performance liquid chromatographic (HPLC) assay for calycosin-7-O-beta-D-glucopyranoside in rat plasma and urine with solid-phase extraction (SPE) was developed. Rutin was employed as an internal standard. The mobile phase consisted of acetonitrile-water (16:84, v/v) at a flow rate of 1.0 mL/min. Detection was set at 280 nm. The limit of quantitation of calycosin-7-O-beta-D-glucopyranoside was 0.2 microg/mL in both plasma and urine. The standard curve was linear from 0.2 to 10.0 microg/mL in plasma, and 0.2 to 5.0 microg/mL in urine. Both intra- and inter-day precision of the calycosin-7-O-beta-d-glucopyranoside were determined and their RSD did not exceed 10%. The method was successfully applied to the analysis of samples obtained from a basic pharmacokinetic study, in which calycosin-7-O-beta-d-glucopyranoside was administered orally to rats.  相似文献   

5.
A reversed-phase high-performance liquid chromatography assay for mangiferin in rat plasma and urine was developed. Rutin was employed as an internal standard. The mobile phase consisted of acetonitrile-water (16:84, v/v) containing 3% acetic acid at a flow rate of 1 mL/min. Detection was at 257 and 365 nm for mangiferin in plasma and urine, respectively. The limit of quantitation (LOQ) of mangiferin was 0.6 microg/mL in plasma, and 0.48 microg/mL in urine. The standard curve was linear from 0.6 to 24 microg/mL in plasma, and 0.48 to 24 microg/mL in urine, both intra- and inter-day precision of the mangiferin were determined and their RSD did not exceed 10%. The method provides a technique for rapid analysis of mangiferin in rat plasma and urine, which can be used in pharmacokinetic studies.  相似文献   

6.
A rapid, simple, and sensitive RP-HPLC analytical method was developed for the simultaneous determination of triclabendazole and ivermectin in combination using a C18 RP column. The mobile phase was acetonitrile-methanol-water-acetic acid (56 + 36 + 7.5 + 0.5, v/v/v/v) at a pH of 4.35 and flow rate of 1.0 mL/min. A 245 nm UV detection wavelength was used. Complete validation, including linearity, accuracy, recovery, LOD, LOQ, precision, robustness, stability, and peak purity, was performed. The calibration curve was linear over the range 50.09-150.26 microg/mL for triclabendazole with r = 0.9999 and 27.01-81.02 microg/mL for ivermectin with r = 0.9999. Calculated LOD and LOQ for triclabendazole were 0.03 and 0.08 microg/mL, respectively, and for ivermectin 0.07 and 0.20 microg/mL, respectively. The intraday precision obtained was 98.71% with RSD of 0.87% for triclabendazole and 100.79% with RSD 0.73% for ivermectin. The interday precision obtained was 99.51% with RSD of 0.35% for triclabendazole and 100.55% with RSD of 0.59% for ivermectin. Robustness was also studied, and there was no significant variation of the system suitability of the analytical method with small changes in experimental parameters.  相似文献   

7.
A simple and sensitive high-performance liquid chromatography (HPLC) method has been developed and validated for the determination of DRF-1042, a novel orally active camptothecin (CPT) analog, in human plasma. The sample preparation was a simple deproteinization with acidified methanol yielding almost 100% recovery of DRF-1042. An isocratic reverse-phase HPLC separation was developed on a Supelcosil-LC318 column (250 x 4.6 mm, 5 microm) with mobile phase consisting of 1% v/v triethylamine acetate, pH 5.5 and acetonitrile (80:20, v/v) at a fl ow rate of 1.0 mL/min. The eluate was monitored with a fluorescence detector set at excitation and emission wavelengths of 370 and 430 nm, respectively. The standard curves were linear (r(2) > 0.999) in the concentration ranges 5.0-2004 ng/mL. The lower limit of quantification (LLQ) of the assay was 5 ng/mL. The mean measured quality control (QC) concentrations (range 5 ng/mL to 40 microg/mL) deviated from the nominal concentrations in the range of -10.5-0.08 and -14.5-7.97%, inter- and intra-day, respectively. The inter- and intra-day precisions in the measurement of QC samples at four tested concentrations, were in the range 0.64-5.89% relative standard deviation (RSD) and 0.33-14.7% RSD, respectively. The method was found to be suitable for measurement of plasma concentrations above the calibration curve after serial dilutions. Stability of DRF-1042 was confirmed in a battery of studies, viz., on bench-top, in the auto-sampler, in the stock solutions, after four quick freeze-thaw cycles, up to one month at -20 degree C in human plasma and up to 2 months in the ex vivo samples. The method is simple, sensitive and reliable and has been successfully implemented to investigate the clinical pharmacokinetics of DRF-1042 in cancer patients in a phase I clinical trial.  相似文献   

8.
Supercritical fluid chromatography is a safe and ecofriendly analytical technique that has not been fully applied to the analysis of traditional Chinese medicine. This is the first study on the separation of six quality markers—paeoniflorin, albiflorin, benzoyl paeoniflorin, oxypaeoniflorin, gallic acid and benzoic acid—from raw, wine‐baked and vinegar‐baked Paeoniae Alba Radix (PAR) by Supercritical fluid chromatography. Optimum separation was achieved on an HSS C18 SB column (100 × 3.0 mm, 1.8 μm particles) with a gradient elution of high‐purity carbon dioxide as mobile phase A and methanol–acetonitrile (70:30, v/v) with 0.10% phosphoric acid as mobile phase B. The flow rate was set at 0.7 mL/min for 15.0 min. The method was validated in terms of the overall intraday and interday precision, with relative standard deviations (RSDs) of 0.87–2.87 and 1.47–3.63%, respectively. The recoveries were 98.10–103.60% with an RSD of 1.00–3.40%. The stability of the RSD values was in the range 1.10–3.78%. The developed approach was successfully applied and provides a valuable reference for the quality assessment of PAR and processed PAR. The results also revealed that the standardization of processing technology is of great significance to the fluctuations in quality before and after the processing of traditional Chinese medicine.  相似文献   

9.
10.
A method for quantification of the fine particle dose of lactose is described, using a hydrophilic interaction chromatography (HILIC) method and evaporative light scattering detection. The HILIC method used an aminopropyl column and a mobile phase consisting of acetonitril/water (80/20, v/v) for isocratic elution. Sensitive chromatography was obtained using a low concentration of water in the extraction solvent. The detection limit (RSD<10%) at an injection volume of 10 microL is 10 microg/mL. Linearity was obtained in the range of 10-80 microg/mL (R(2)>0.99). A relative standard deviation (RSD) of 0.5% (N=6) demonstrated good precision of the optimized method.  相似文献   

11.
Paeoniflorin, albiflorin and benzoylpaeoniflorin are three representative monoterpene glycosides in Radix Paeoniae Alba, a well-known traditional Chinese medicine with a great important biological activity. In the present paper, the three marker compounds were simultaneously quantified by TLC densitometric methods using high performance thin layer chromatography. The established method was validated in terms of LOD/LOQ, linearity, recovery and repeatability. The method was found to be precise with RSDs for intra-day in the range of 0.78–1.05, 0.67–0.98, 0.93–1.42% and for inter-day in the range of 0.85–1.23, 0.98–1.29, 1.28–1.94% for different concentrations of albiflorin, paeoniflorin and benzoylpaeoniflorin. Instrumental precision was 0.36, 0.41 and 0.45 (% RSD) for albiflorin, paeoniflorin and benzoylpaeoniflorin. Recoveries of abliflorinl, paeoniflorin and benzoylpaeoniflor were 98, 101.95 and 96.25%, respectively. The proposed method is simple, precise, specific, sensitive, and accurate and can be used for routine quality control of the crude drug.  相似文献   

12.
A simple and reliable high-performance liquid chromatographic (HPLC) method has been developed for the determination of nodakenin in rat plasma. The concentration of nodakenin was determined in plasma samples after deproteinization with methanol using hesperidin as internal standard. HPLC analysis was performed on a Diamonsil C(18) analytical column using acetonitrile-water (25:75, v/v) as the mobile phase and a UV detection at 330 nm. This method was validated in terms of recovery, linearity, accuracy and precision (intra- and inter-day variation). The extraction recoveries were 91.3 ± 10, 87.8 ± 4.8 and 92.6 ± 5.1 at concentrations of 0.500, 5.00 and 40.0 μg/mL, respectively. The standard curve for nodakenin was linear (r(2) ≥ 0.99) over the concentration range 0.250-50.0 μg/mL with a lower limit of quantification of 0.250 μg/mL. The intra- and inter-day precision (relative standard deviation, RSD) values were not higher than 12% and the accuracy (relative error, RE) was within ± 5.8% at three quality control levels. The validated method was successfully applied for the evaluation of the pharmacokinetics of nodakenin in rats after oral administration of Rhizoma et Radix Notopterygii decoction and nodakenin solution.  相似文献   

13.
A high-performance liquid chromatographic method for the determination of wogonoside in plasma of rats administrated orally with the traditional Chinese medicinal preparation Huang-Lian-Jie-Du decoction was developed. Sample preparation was carried out by protein precipitation with a mixture of acetonitrile and methanol (1:1, v/v). The extracted sample was separated on a Hypersil C(18) (150 x 5 mm i.d., 5 microm) analytical column by linear gradient elution using 0.05% (v/v) phosphoric acid (containing 5 mm sodium dihydrogen phosphate) and acetonitrile as mobile phase at a flow rate of 1.5 mL/min. The eluate was detected using a UV detector at 276 nm. The assay was linear over the range 0.109-7.0 microg/mL (R(2) = 0.9999, n = 5). Mean recovery was determined as 98.39%. Intra- and inter-day precisions (RSD) were < or =7.59%. The limit of quantitation was 0.109 microg/mL. After validation, the HPLC method developed was applied to investigate the preliminary pharmacokinetics of wogonoside in rat after oral administration of Huang-Lian-Jie-Du decoction.  相似文献   

14.
Abstract

A sensitive, specific, qualitative, and quantitative extraction procedure followed by an hplc assay of 11-nor-Δ-9-tetrahydrocannabinol-9-carboxylic acid (THC-COOH) from human urine is developed. Using a new, “mixed mode”, bonded silica gel solid phase extraction (SPE) column, the analyte was selectively isolated from the urine component. Following extraction, the presence of THC-COOH was confirmed and quantitated by a UV detector on a Varian 15cm C18 column using 35:65 v/v 50 mM phosphoric acid:acetonitrile at a flow rate of 1.5 mL/min. The limit of detection was 10 ng/mL at a signal to noise ratio of 2.5. The method showed linearity in the 10–300 ng/mL range (r=0.999) with good precision (RSD 1.4%) and accuracy (87% absolute recovery).  相似文献   

15.
We have developed a reversed-phase high-performance liquid chromatography-pulsed amperometric detection (RP-HPLC-PAD) method for the detection of albiflorin and paeoniflorin in Paeoniae Radix and Wu-ji-san. Albiflorin and paeoniflorin were completely separated using 10% acetonitrile in 5 mM sodium phosphate buffer (pH 3.0) as an eluent and detected by PAD under alkaline conditions after using a post-column delivery system. The limit of detection (S/N = 3) and the limit of quantification (S/N = 10) were 0.10 and 0.35 ng for albiflorin, and 0.20 and 0.50 ng for paeoniflorin, respectively. The coefficients of linear regression were 0.9995 and 0.9999 for concentrations between 0.035 and 100 μg/mL. The intra- and inter-day precision (RSDs) was less than 3.56% in Paeoniae Radix and Wu-ji-san. The average recoveries from Paeoniae Radix and Wu-ji-san were 99.01–100.94% and 99.46–100.64%. This method shows higher selectivity than HPLC–UV method for analyzing albiflorin and paeoniflorin in Chinese medicinal preparation.  相似文献   

16.
In the present study, an RP high performance liquid chromatographic method was developed and validated for the determination of allicin in garlic powder and tablets. Chromatographic separation was carried out on an RP-18(e )column (125 mm x 4 mm), using a mobile phase, consisting of methanol-water (50:50 v/v), at a flow rate of 0.5 mL/min and UV detection at 220 nm. Ethylparaben was used as the internal standard. The assay was linear for allicin concentrations of 5.0-60.0 microg/mL. The RSD for precision was <6.14%. The accuracy was above 89.11%. The detection and quantification limits were 0.27 and 0.81 microg/mL, respectively. This method was used to quantify allicin in garlic powder samples. The results showed that the method described here is useful for the determination of allicin in garlic powder and tablets.  相似文献   

17.
A high-performance liquid chromatographic (HPLC) method was developed for the first time to simultaneously quantify syringin and chlorogenic acid in rat plasma using wavelength-transfer technology. The analysis was performed on a Diamonsil C(18) column (200 x 4.6 mm i.d., 5 microm particle size) with isocratic mobile phase consisting of acetonitrile-0.05% phosphoric acid (12:88, v/v). The linear ranges were 0.20-10 and 0.25-30 microg/mL, respectively. The lower limits of quantification were 0.20 and 0.25 microg/mL, respectively. The method was shown to be reproducible and reliable with intraday precision below 8.5 and 6.1%, interday precision below 7.1 and 5.5%, accuracy within +/-7.1 and +/-8.6%, and mean extraction recovery excess of 92.1 and 80.9%, respectively, which were all calculated from the blank plasma sample spiked with syringin and chlorogenic acid at three concentrations of 0.20, 1.0 and 6.0 microg/mL for syringin and 0.25, 2.0 and 20 microg/mL for chlorogenic acid. This method was validated for specificity, accuracy and precision and was successfully applied to the pharmacokinetic study of syringin and chlorogenic acid in rat plasma after intravenous administration of Aidi lyophilizer.  相似文献   

18.
A new rapid, sensitive and validated HPLC method has been developed for the determination of methylxanthines and their metabolites in asthmatic patients. The method was initiated by using spiked urine samples on a silica monolithic column as a novel packing material. The mobile phase consisted of 10 mM potassium dihydrogen phosphate buffer/methanol (87.5:12.5 v/v), at a flow rate 1 mL/min. Detection was set at 274 nm. The LOQ for all the compounds ranged from 14 to 41 ng/mL. Excellent linearity was achieved over the studied range of concentration with correlation coefficients 0.9991–0.9998 (n = 6). The developed method was validated by precision and accuracy with RSD <2.55%. On extraction of the drugs and metabolites from the urine samples high recoveries were achieved ranging from 82.06 to 98.34% w/w on RP18 cartridges and methanol/chloroform (20:80 v/v) as the extraction solvent. This method has advantages over other methods using conventional C18 packings.  相似文献   

19.
Health-care workers handling antineoplastic agents may be exposed to extremely low doses of these drugs. Very sensitive and specific analytical methods are therefore needed for biological monitoring. The aim of this study was to develop and validate a method for trace level determination of doxorubicin, epirubicin, daunorubicin and idarubicin in human urine, using epi-daunorubicin as an internal standard. Solid-phase extraction (SPE) was used for sample preparation. Urine samples were loaded onto Bond Elut C18 cartridges. The analytes were eluted in methylene chloride/2-propanol (1:1, v/v) and then evaporated to dryness. The residue was reconstituted with the mobile phase prior to high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS) analysis. Quantitation of each analyte was performed using the multiple reaction monitoring (MRM) method. The urine assay was linear over the range 0.1-2.0 microg/L, with a lower limit of quantification (LLOQ) of 0.10 microg/L for doxorubicin and epirubicin, and 0.03 microg/L for daunorubicin and idarubicin. The respective limits of detection (LODs) were 0.04 and 0.01 microg/L. The precision and accuracy of the assay were determined on three different days. The within-series precision was found to be always less than 13.9% for all the analytes. The overall precision expressed as relative standard deviation (RSD) was always less than 10.6%. The recovery of anthracyclines was assessed at two concentrations of the range tested (0.1 and 2.0 microg/L) and it ranged from 87.7% (daunorubicin) to 102.0% (doxorubicin) and from 79.1% (daunorubicin) to 90.7% (idarubicin) for the lower and the higher level, respectively, with a RSD always less than 9.1%. The uncertainty of the present assay was also evaluated and the combined uncertainty was always less than 20% over all the days of the validation study. This is the first method that makes use of LC/MS/MS for the biological monitoring of occupational exposure to anthracyclines.  相似文献   

20.
A rapid and simple high-performance liquid chromatographic method for the analysis of 1,3-dihydroxy-2-methylxanthone (DHMXAN) in biodegradable poly(D,L-lactide-co-glycolide) (PLGA) nanosphere and nanocapsule formulations is developed and validated. The method does not require any complex sample extraction procedure. Chromatographic separation is made with a reversed-phase C18 column, using methanol-water (90:10, v/v) containing 1% (v/v) acetic acid as a mobile phase at a flow rate of 1 mL/min. Identification is made by UV detection at 237 nm. The isocratic system operates at ambient temperature and requires 7.5 min of chromatographic time. The developed method is statistically validated according to ICH guidelines and USP 29 for its specificity, linearity, accuracy, and precision. The assay method proposed in this study is specific for DHMXAN in the presence of nanosphere and nanocapsule excipients. Diode-array analyses confirm the purity of DHMXAN peak in stress conditions (> 99.0%). The method is shown to be linear (r > or = 0.999) over the concentration range of 0.25-3.0 microg/mL. Recovery ranges from 99.0% to 102.7% (RSD: 1.49%) and from 98.3% to 101.6% (RSD: 1.07%) for nanospheres and nanocapsules, respectively. Repeatability (intra-assay precision) and intermediate precision is acceptable with RSD values ranging from 0.6% to 1.9% and from 0.3% to 2.0%, respectively. The method is shown to be suitable for the evaluation of DHMXAN content entrapped in PLGA nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号