首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
三点弯曲试样动态应力强度因子计算研究   总被引:2,自引:0,他引:2  
利用Hopkinson压杆对三点弯曲试样进行冲击加载,采集了垂直裂纹面距裂尖2mm和与裂纹面成60°距裂尖5mm处的应变信号。根据裂尖附近测试的应变信号计算试样的动态应力强度因子,并与有限元计算结果进行比较,结果表明由于裂尖有一段疲劳裂纹区,通过裂尖附近应变信号来计算动态应力强度因子时,如果裂尖位置确定不准及粘贴应变片位置不够准确对计算结果将带来很大影响。因此利用应变片法计算动态应力强度因子时,为了获得更准确的计算结果,在实验后应对试件裂纹面进行分析测量,重新确定裂尖位置,必要时需对应变片至裂尖距离进行修正后再计算动态应力强度因子值。  相似文献   

2.
40Cr材料动态起裂韧性KId()的实验测试   总被引:4,自引:0,他引:4  
描述了利用Hopkinson压杆技术加载三点弯曲试样测试40Cr,材料动态起裂韧性KId()的试验方法。试样上的动态载荷历程由Hopkinson杆直接测得,并分别代入动态有限元程序及近似公式求得动态应力强度因子历史;由贴在试样裂尖附近的应变片确定起裂时间,最终确定起裂时的动态应力强度因子值,即动态起裂韧性KId()。试验结果表明:利用Hopkinson压杆技术加载三点弯曲试样测试材料动态起裂韧性的方法是可行的,起裂时,动态有限元的位移法、应力法及近似公式法求得的动态应力强度因子值比较吻合;在本文的载荷速率下,40Cr材料动态起裂韧性KId()与准静态裂韧性KId()相比,降低了约28%。  相似文献   

3.
高应变率下断裂韧性实验的数值模拟   总被引:1,自引:0,他引:1  
采用有限元软件ANSYS/LS-DYNA程序对静态和冲击荷载作用下的含裂纹半圆弯曲(SCB)实验进行了数值模拟。根据静态实验的模拟结果,提出了适合复合型加载的Ⅰ型应力强度因子拟合公式,采用该公式计算应力强度因子的最大误差不超过10%。动态实验的模拟结果表明:对于纯Ⅰ型加载的SCB实验,动态应力强度因子随着试样半径、支座间距以及相对裂纹长度的变化呈现规律性变化;当试样半径小于60mm、相对支座间距为1.2、相对裂纹长度在0.1~0.4范围内时,惯性效应的影响较小,采用静态拟合公式计算裂尖的动态应力强度因子的误差约10%;对于复合型加载的SCB实验,当相对裂纹长度为0.2~0.4、裂纹倾角在10°~40°范围内时,采用静态拟合公式计算裂尖的动态应力强度因子的误差小于10%。  相似文献   

4.
动态起裂韧性测试过程的三维分析   总被引:1,自引:0,他引:1  
本文应用线性弹性动脉有限元分析方法,对利用HOPKINSON压杆技术测试材料动态起裂韧性的试验过程进行了三维数值计算,求得了加载波入,加载点位移,试样裂尖动脉应力强度因子,裂尖附近点应变历程以及材料动态起裂韧性值,并与实验-数值方法所得的各结果进行了比较分析。  相似文献   

5.
采用新型Ⅱ型动态断裂测试技术,对高强钢40Cr在高加载速率下的Ⅱ型动态断裂特性进行了测试研究。基于新设计的Ⅱ型动态断裂试样和分离式霍普金森压杆(split Hopkinson pressure bar, SHPB)技术,通过实验-数值方法确定了裂尖在加载过程中的应力强度因子曲线。采用应变片法确定了试样的起裂时间,最终得到40Cr的Ⅱ型动态断裂韧性值,并对其加载速率相关性和材料的失效机理进行了研究。结果表明,在1.08~5.53 TPa·m1/2/s的加载速率范围内,40Cr的Ⅱ型动态断裂韧性基本表现为与加载速率成正相关的变化趋势。通过对试样断口形貌的分析,确定了材料的失效模式及机理,发现随着加载速率的增加,存在拉伸型失效向绝热剪切型失效模式转变的现象。  相似文献   

6.
不同加载状态下TA2钛合金绝热剪切破坏响应特性   总被引:2,自引:1,他引:1  
一般认为绝热剪切现象在宏观上表现为材料动态本构失稳,即热软化大于应变硬化.本文采用帽型受迫剪切试样研究TA2钛合金的动态力学特性和本构失稳过程.首先对剪切区加载应力状态进行理论和数值分析,通过合理设计帽型试样,剪切区变形可近似按剪切状态处理;结合二维数字图像相关法(two-dimensional digital image correlation,DIC-2D)直接测试试样剪切区应变演化,给出帽型受迫剪切实验的等效应力-应变响应曲线.进一步,利用Hopkinson压杆对TA2钛合金开展动态压缩及帽型剪切对比试验研究,比较压缩、剪切试验得到的等效应力-应变曲线,采用"冻结"试样方法分析试样中绝热剪切局域化演化过程,探讨不同加载状态下TA2钛合金的绝热剪切破坏现象及其动态力学响应特性.实验结果表明,在塑性变形初始阶段,动态压缩及剪切加载下的等效应力-应变曲线符合较好,但随塑性损伤发展及绝热剪切带形成,两者出现分离,表明损伤及绝热剪切演化过程与应力状态相关.剪切试样实验得到的本构"软化"特性能够反映绝热剪切带起始、破坏演化过程的力学响应特性,而在动态压缩实验中,即使试样中已出现双锥形的绝热剪切带及局部裂纹分布,其表观等效应力-应变曲线并不出现软化特征,动态压缩实验无法得到关于绝热剪切起始、发展以及破坏的本构软化响应特性.  相似文献   

7.
应用界面断裂力学理论和Stroh方法,研究了广义平面变形下动态裂纹沿着各向异性双材料界面扩展时的裂尖奇异应力及动态应力强度因子.双材料界面的动态裂尖区域特性主要由两个实矩阵W和D确定,且裂尖奇异应力和动态应力强度因子可以由包含这两个矩阵的柯西奇异积分方程确定,同时给出了动态应力强度因子和能量释放率的显示表达式.算例得出当裂纹以小速度扩展时,裂尖振荡因子ε与静态时几乎相同,当界面裂纹扩展速度接近瑞利波速时,ε趋于无穷大;同时得出应力强度因子及能量释放率随裂纹扩展速度的变化关系.  相似文献   

8.
研制了一种可以实现多次加载的凸轮递进式中应变率压缩实验系统。该实验装置采用伺服电机驱动蓄能飞轮转动,后蓄能飞轮带动加载凸轮压缩加载杆的方法,实现对试样中应变率的压缩;同时在一级压缩即将结束时步进电机迅速推动蓄能飞轮贴近加载凸轮,实现多级压缩。试样的动态压缩载荷通过两侧杆上粘贴的应变片所记录的应变信号得到;试样变形过程通过激光干涉测速系统测得的试样两侧杆端的运动速度信号得到。以纸蜂窝试样为例,基于研制的中应变率实验系统,并结合高速摄影图片,研究了厚度10 mm、直径14.5 mm的纸蜂窝试样在应变率3.5 s-1下的动态压缩力学性能,得到了单级压缩和两级压缩过程中纸蜂窝试样的应力-应变曲线和变形过程,并讨论了该实验系统的可靠性。此实验系统可以实现多级递进式中应变率加载;纸蜂窝试样在中等应变率下的峰值强度和平台应力对高应变率下的动态压缩实验数据和低应变率下的准静态实验数据进行了较好地衔接;试样的失效模式主要为准弹性变形后的外壁屈曲和面内剪切。  相似文献   

9.
基于数字散斑相关方法测定Ⅰ型裂纹应力强度因子   总被引:1,自引:0,他引:1  
提出了一种通过数字散斑相关方法测定金属材料Ⅰ型裂纹尖端位置和应力强度因子的实验方法.实验采用疲劳试验机对含Ⅰ型缺口的Cr12MoV钢试件预制裂纹,通过数字散斑相关方法测试试件在三点弯曲加载条件下裂纹的扩展过程及裂尖区域的位移场.将位移场数据代入裂尖位移场方程组,采用牛顿-拉普森方法求解含未知参量的裂尖非线性位移场方程组,计算裂尖位置和应力强度因子.实验结果表明,采用该方法可以准确地测定金属材料Ⅰ型裂纹应力强度因子、裂尖位置及裂纹扩展长度,解决了以往研究中因不能准确测定裂纹尖端位置,而无法准确计算Ⅰ型裂纹裂尖断裂参数的难题,揭示了金属材料裂纹扩展过程中应力强度因子演化特征.  相似文献   

10.
用裂纹张开位移计算三点弯曲试样的动态应力强度因子   总被引:4,自引:0,他引:4  
给出了一种由裂纹的动态张开位移计算三点弯曲试样的动态应力强度因子的简单方法。对于两种不同几何尺寸的试样,在三类不同载荷作用下给出了数植算例,并与完全的动态有限元方法的计算结果进行了比较。结果表明:两种方法的计算结果相当一致。最后,还给出了由测定三点弯曲试样的裂纹张开位移确定试样的动态应力强度因子,最终确定材料动态起裂韧性的方法。  相似文献   

11.
凹槽梁试样的动态应力强度因子   总被引:2,自引:0,他引:2  
对凹槽梁试样动态应力强度因子现有的几种计算方法进行了分析对比。在此基础上,考虑冲击速度、试样的转动惯性和剪切变形对动态应力强度因子的影响,求解得到了一个新的动态应力强度因子的表达式。  相似文献   

12.
本文研究了位于界面相中的圆柱形界面裂纹的扭转冲击问题.采用Laplace、Fourier变换和位错密度函数将混合边值问题转化为求解Cauchy核奇异积分方程,利用Laplace数值反演技术计算了动态应力强度因子.讨论了材料特性和结构的几何尺寸对动态应力强度因子的影响.结果表明,随着界面相厚度的增加,无量纲化的动态应力强度因子减小.当裂纹靠近剪切弹性模量大的材料时,无量纲化的动态应力强度因子增大,反之减小.界面相两侧不同的材料组合对裂尖动态应力强度因子的影响是随着剪切弹性模量和质量密度的比值的增加而减小.界面相中裂纹长度对裂尖动态应力强度因子的影响比其他因素的影响大.  相似文献   

13.
金属材料在复杂载荷条件下的动态力学行为研究一直备受关注,但受限于实验设备,金属材料的动态包辛格效应响应一直都难以获得。为了探究金属材料的包辛格效应与应变率效应之间的关系,本文中提出一种基于电磁霍普金森杆(electromagnetic split Hopkinson bar,ESHB) 的非同步加载实验技术,为测试金属材料在高应变率加载下的包辛格效应提供了一种有效的实验方法。本文中,首先介绍了非同步加载装置的主要特点,即可以用两列由脉冲发生器产生的应力波对受载试样进行连续的一次动态拉-压循环加载,且加载过程保证了应力波的一致性。分析了应力波对试样加载过程中的波传播历程,确保了加载过程的连续性。随后介绍了动态加载过程,数据处理方法和波形分离手段,并对动态加载过程进行应力平衡性分析,论证了实验装置的可靠性。最后采用该方法测试了5%预应变下6061铝合金动态压缩-动态拉伸的包辛格效应,并与准静态下的实验结果进行对比。实验结果表明,该材料单轴压缩没有明显的应变率效应,但其包辛格效应具有应变率依赖性,高应变率下材料的包辛格应力影响因子由0.07增大至0.17,具有显著的提升,这对传统意义上铝合金材料应变率不敏感的结论提出了挑战。  相似文献   

14.
中心直裂纹平台巴西圆盘复合型动态断裂实验研究   总被引:2,自引:0,他引:2  
汪坤  王启智 《实验力学》2008,23(5):417-426
制作了中心直裂纹平台巴西圆盘(cracked straight through flattened Brazilian disc-CSTFBD)试样,利用分离式霍普金森压杆(split Hopkinson pressure bar-SHPB)加载,进行了岩石纯Ⅰ型和复合型(Ⅰ+Ⅱ型)动态断裂实验。由于加载角(载荷方向与裂纹线的夹角)在制作试样时已经通过裂纹线与试样平台的位置关系确定,因此在实验中可以方便而准确地实施加栽。比较了纯Ⅰ型加载和复合型加载下压杆上记录的入射波、反射波和透射波的波形。采用实验与数值相结合的方法,将实验得到的动态载荷输入有限元程序,得到了纯Ⅰ型试样的动态断裂韧度和复合型试样的两种动态应力强度因子的时间历程。计算了加载角为15°的试样应力强度因子的复合比(KI(t)/KⅡ(t)),此计算值与文献结果吻合较好,验证了实验方法的有效性。  相似文献   

15.
40CrNiMoA钢的动态剪切断裂行为研究   总被引:5,自引:0,他引:5  
采用Hopkinson单压杆技术对40CrNiMoA钢单边平行双裂缝试样进行高速剪切加载,得到了在不同动态高加载率时的动态断裂起始韧性。实验表明,在实验的加载率范围内,沿原裂纹方向扩展的动态剪切型断裂存在两种不同的断裂模式,分别称为常规的韧性剪切断裂模式和绝热剪切型断裂模式。前者的断裂韧性随加载率的提高而增大,而后者的断裂韧性则随加载率的提高而减小。根据对这两种断裂行为及其相互转变的实验结果的分析探讨,认为存在一个临界应力强度因子率Kcd,它表征两种断裂模式发生转变的条件。  相似文献   

16.
对混凝土类材料动态压缩应变率效应研究的发展及问题进行了概述,对比不同应力状态下混凝土类材料动态压缩应变率效应的表现特征,揭示了不同加载路径下实测动态强度提高系数的显著差异。研究表明,在高应变率下,基于初始一维应力加载路径的试件将因横向惯性效应导致的侧向围压而演化至多维应力状态,传统霍普金森杆技术无法获得高应变率下基于真实一维应力路径的动态强度提高系数,在强度模型中直接应用实测数据将过高估计材料的动态强度。鉴于应变率效应的加载路径依赖性,将仅包含应变率的强度提高系数模型扩展至同时计及应变率和应力状态的多维应力状态模型,并结合Drucker-Prager准则在强度模型中给予了实现。针对具有自由和约束边界试件开展的数值霍普金森杆实验表明,多维应力状态下的应变率效应模型可以考虑应变率效应随应力状态改变的特点,从而准确预测该类材料的动态压缩强度。研究结果可为正确应用霍普金森杆技术确定脆性材料的动态压缩强度提供参考。  相似文献   

17.
为了能在传统的分离式Hopkinson压杆上准确可靠地测试激光金属沉积GH4169的动态剪切特性,基于数值模拟方法对比分析了三种不同动态剪切试样形式及尺寸对剪切区应力分布的影响,结果表明:经过尺寸优化后的双剪切试样的剪切区剪应力占主导地位,可实现近似纯剪切的动态剪切实验。利用此试样形式,系统测试了不同取向(扫描方向、沉积方向)的LMD GH4169试样在不同应变率下的剪切应力应变曲线,并对破坏后试样进行了SEM分析观察。结果表明:(1) 本文中选用的试样形式剪切纯度高,应力沿剪切区宽度厚度分布均匀,可以更好地得到材料的动态剪切特性;(2) 对实验所得剪应力-剪应变曲线进行分析,发现本材料在扫描路径方向和沉积方向并没有表现出明显的各向异性,但随着应变率的增加,具有明显的应变率强化效应;将单轴压缩和动态剪切应力应变曲线同时转换为等效应力应变曲线,对比证实了试样形式能很好反应材料的剪切特性;(3) 通过对LMD GH4169剪切变形破坏试样的微观分析发现,随着应变率升高,断口韧窝尺寸和深度减小,韧性降低,在更小的变形量下容易剪切失效。初始微观缺陷容易导致材料的动态剪切破坏。  相似文献   

18.
三点弯曲试样动态冲击特性的有限元分析   总被引:6,自引:0,他引:6  
本文使用动态有限元技术,对两种不同几何尺寸,两种不同材料的三点弯曲试样在三类七种不同冲击载荷作用下的动态响应进行了分析,求得了动态应力强度因子随时间的变化规律,并与准静态应力强度因子进行了比较,计算结果表明:半冲击载荷历史代入静态公式确定动态应力强度因子的做法是不正确的,要求得动态应力强度因子,必须对试样进行完全的动态分析,当材料的E/ρ值相同时,动态应力强度因子的响应曲线完全相同,而动态应力强度  相似文献   

19.
TC4在动态载荷下的剪切行为研究   总被引:1,自引:0,他引:1  
使用分离式霍布金森压杆(SHPB)对2种TC4(Ti-6Al-4V)试样(单边剪切试样与双边剪切试样)在应变率104 s-1下进行动态剪切加载,利用SIM D8高速照相系统捕捉了绝热剪切带扩展的整个历程,得到了TC4在拍照时刻的应力应变曲线;使用金相显微镜和SEM扫描电镜对TC4绝热剪切带的微观形貌进行观察,发现绝热剪切带宽度为5~12 μm,断口从韧窝断裂演变为解理断裂,可观测到韧窝状与河流花样断口形貌,但是并未看到相变的发生;对2种试样就产生绝热剪切带的形式与敏感性进行了分析,实验表明双边试样更易产生绝热剪切带;通过高速照相系统的标定换算,得到TC4绝热剪切带产生的临界剪切应变在78%~88%之间。在SHPB动态加载条件下,TC4绝热剪切带的扩展速度在460~1 250 m/s之间,且应变率越高,剪切带扩展越快,扩展平均速度与名义应变率近似呈线性关系;另外,在同一加载速率下,剪切带并不是匀速扩展,其扩展速度随载荷的增加而不断增加。  相似文献   

20.
为了研究爆炸荷载下青砂岩I型裂纹动态断裂韧度的测试方法,利用内部中心单裂纹圆盘(internal center single crack disc,ICSCD)试样进行了爆炸试验研究。试样由外径为400 mm、内部加载孔径为40 mm、预制裂纹长为60 mm的青砂岩制成。利用同步触发器实现圆盘中心起爆,并同步触发超动态应变仪,通过径向应变片获取爆炸应变曲线、裂纹尖端的环向应变片获取裂纹起裂时刻。以实测爆炸应变曲线为参量,应用Laplace变换推导出试样加载孔壁应力时程曲线表达式,并用数值反演法得出其数值解。利用ANSYS有限元软件,建立数值计算模型,通过相互作用积分法得出了在爆炸荷载作用下砂岩的I型动态应力强度因子曲线。研究结果表明:(1)ICSCD试件能够很好地用来测试岩石的动态起裂韧度;(2)炮孔周边的应力可以通过拉普拉斯变换的数值反演方法得到;(3)通过试验-数值法能稳定计算出ICSCD砂岩构型的动态起裂韧度,其最大误差仅为7%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号