首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
A background electrolyte (BGE) containing a 100 mM concentration of an alkylammonium cation with ethyl, propyl or butyl groups provides an excellent medium for separation of anions by capillary electrophoresis (CE). Two major effects were noted. Use of one of a series of alkylammonium cations in the BGE at a selected pH provides a simple and effective way to vary and control electroosmotic flow (EOF) over a broad range. It is believed that the alkylammonium cations are coated onto the capillary surface through a reversible dynamic equilibrium. Secondly, alkylammonium cations modify the electrophoretic migration of sample anions and the electroosmotic migration of neutral organic analytes by association interaction. This selective interaction results in improved anion separations and permits the simultaneous separation of neutral analytes. The degree of association interaction varies with the bulk and hydrophobicity of the alkylammonium cations. Incorporation of an aliphatic amine salt of moderate molecular weight in the running electrolyte provides a valuable new way to vary the migration times of sample anions and to optimize their resolution. The interactions between alkylammonium cations and sample anions or neutral organics appear to take place entirely within the liquid phase and do not require a polymeric or micellar pseudo phase.  相似文献   

2.
UV-absorbing neutral substances are commonly used as markers of mean electroosmotic flow in capillary electrophoresis for their zero electrophoretic mobility in an electric field. However, some of these markers can interact with background electrolyte components and migrate at a different velocity than the electroosmotic flow. Thus, we tested 11 markers primarily varying in their degree of methylation and type of central atom in combination with five background electrolyte cations differing in their ionic radii and surface charge density, measuring the relative electrophoretic mobility using thiourea as a reference marker. Our results from this set of experiments showed some general trends in the mobilization of the markers based on the effects of marker structure and type of background electrolyte cation on the relative electrophoretic mobility. As an example, the effects of an inadequate choice of marker on analyte identification were illustrated in the electrophoretic separation of glucosinolates. Therefore, our findings may help electrophoretists appropriately select electroosmotic flow markers for various electrophoretic systems.  相似文献   

3.
电解质溶液组成对低分子量阴离子毛细管电泳分离的影响   总被引:3,自引:0,他引:3  
傅小芸  吕建德 《分析化学》1997,25(6):704-707
研究了毛细管电泳间接紫外检测法测定低分子量阴离子时电解质溶液中背景电解质、电渗流改性剂、pH值、有机溶剂等对分离的影响;比较了铬酸根、邻苯二甲酸根、苯甲酸根3种背景离子对不同迁移率阴离子分离的影响,并对间接紫外检测的定量基础及灵敏度进行了讨论;考察了3种不同长链烷基三甲基季铵盐电渗流改性剂浓度对阴离子迁移时间和电渗迁移率的影响,结果表明电渗流的改性效果与烷基链的长度有关;pH影响阴离子的有效迁移率  相似文献   

4.
This paper describes the ability of several ionic liquids cations for electroosmotic flow modulation in capillary electrophoresis. Organic salts based on phosphonium, sulfonium, cysteinium, ammonium, and guanidinium cations were selected to study this property. In addition, the synergistic effect of these compounds in cyclodextrin chiral separation was also evaluated. In comparison with most studied imidazolium-based ionic liquids, several of the cations studied, are stronger modifiers in terms of electroosmotic flow (EOF) modulation. Phosphonium-based compounds and tri-octyl methylammonium chloride ([Aliquat]Cl) had the strongest ability to reverse EOF both in acidic and in basic conditions and had the lowest EOF reversal concentrations in the presence of hydroxypropyl-β-cyclodextrin. EOF modulation ability of phosphonium cations also contributed to the improvement of chiral separation of DL-propranolol by hydroxypropyl-β-cyclodextrin at lower concentrations in comparison with most commonly used EOF modulators such as tetrabutylammonium phosphate.  相似文献   

5.
Non-aqueous capillary electrophoresis (NACE) background electrolytes are most often composed of a mixture of methanol and acetonitrile (ACN) with soluble ammonium salts added as electrolyte. In this study on NACE-MS, we used a mixture of glacial acetic acid and ACN giving rise to an acidic background electrolyte (BGE) with a very low dielectric constant. Impressive changes in selectivity and resolution were observed for structurally closely related indole alkaloids including diastereomers upon addition of ammonium formate as electrolyte and upon variation of the solvent ratio. In order to obtain best separation and MS detection conditions and to reveal the influence of the parameters of the BGE on separation and detection and vice versa of the MS parameters on separation, an optimization strategy was employed using a design of experiments in a central composite design with response surface methodology. It was proven that at high electroosmotic flow conditions capillary electrophoretic separations and thus optimization can be realized without interference from the coupling to an MS system. Several significantly interacting parameters were revealed, which are not accessible with classical univariate optimization approaches. With this optimization, alkaloid mixtures from a plant extract of Mitragyna speciosa, containing a large number of diastereomeric compounds were successfully separated.  相似文献   

6.
Addition of either ethanesulfonic acid or protonated triethylamine to the background electrolyte was found to markedly improve the separation of protonated anilines by capillary electrophoresis. These additives appear to form a thin coating on the capillary surface via a dynamic equilibrium. This results in a change in electroosmotic flow and reduces interactions of the sample cations with the silica surface. A mixture of 10 substituted anilines could be separated, including several positional isomers. Migration times of the sample cations were reproducible with a RSD less than 1.0%.  相似文献   

7.
A simple coating procedure employing a sol-gel process to modify the inner surface of a bare fused-silica capillary with a positively charged quaternary ammonium group is established. Scanning electron microscopic studies reveal that a smooth coating with 1 to approximately 2 microm thickness can be obtained at optimized coating conditions. With 40 mM citrate as a running electrolyte, the plot of electroosmotic flow (EOF) versus pH shows a unique three-stage EOF pattern from negative to zero and then to positive over a pH range of 2.5 to 7.0. At pH above 5.5, the direction of the EOF is from the anode to the cathode, as is the case in a bare fused-silica capillary, and the electroosmotic mobility increases as the pH increases. However, the direction of the EOF is reversed at pH below 4.0. Over the pH range of 4.0 to 5.5, zero electroosmotic mobility is obtained. Such a three-stage EOF pattern has been used to separate six aromatic acids under suppressed EOF and to separate nitrate and nitrite with the anions migrating in the same direction as the EOF. The positively charged quaternary ammonium group on the coating was also utilized to minimize the adsorption problem during the separation of five basic drugs under suppressed EOF and during the separation of four basic proteins with the cations migrate in the opposite direction as the EOF. Also, the stability and reproducibility of this column are good.  相似文献   

8.
Poly(ethylene glycol) (PEG)-coated capillaries exhibit unique properties in nonaqueous electrolytes. Immobilized PEG interacts significantly with different cations present in nonaqueous electrolytes. This can induce a positive surface charge on PEG-coated capillaries and results in an adjustable anodic electroosmotic flow (EOF) in nonaqueous electrolytes whereas a reduced cathodic EOF is observed in aqueous electrolytes. The EOF can reversibly be adjusted by the variation of the electrolyte constitution, namely the type of the solvent used and the nature and concentration of background cations. In methanol and especially in acetonitrile electrolytes the magnitude and also the direction of EOF is strongly dependent on the water content. Using different alkali metal cations, the EOF can be increased, reduced, or even reversed depending on the nature of the cation. The directed manipulation of EOF in methanolic electrolytes using PEG-coated capillaries was applied for optimization of nonaqueous capillary electrophoretic separations of acidic compounds with regard to reproducibility, resolution, and analysis time.  相似文献   

9.
展学强  朱智甲  康经武 《色谱》2011,29(4):362-364
建立了以硝酸钾作为背景电解质测定阿霉素脂质体药物中微量硫酸根离子的毛细管电泳分析法。考察了分离电压、背景电解质、电渗流改性剂浓度、pH值对分离测定的影响。结果表明,当毛细管长度为60 cm(有效长度51.5 cm)、分离电压为~15 kV、缓冲溶液采用20 mmol/L硝酸钾(pH 7.0)、电渗流改性剂采用0.4 mmol/L十六烷基三甲基氯化铵(CTAC)、检测波长为202 nm时,阿霉素脂质体破乳液中硫酸根离子和氯离子在3 min内得到了基线分离,硫酸根离子迁移时间和峰面积的相对标准偏差分别小于0.01%和1.0%,检出限为5 μg/L。用该方法对阿霉素脂质体样品中的微量硫酸根离子进行了分析测定,结果令人满意。  相似文献   

10.
The application of non-aqueous capillary electrophoresis for the separation of very hydrophobic oligomers has been studied. N-Phenylaniline oligomers having degrees of polymerisation (n) of 2, 4, 6, and 8 were taken as model compounds. Capillary electrophoresis could be performed using a mixture of non-aqueous solvents with a high percentage of solvents with a low dielectric constant. These solvents, such as tetrahydrofuran (THF), chloroform or dichloromethane, are needed to solubilise the hydrophobic solutes in the electrolyte. The composition of the solvent mixture and the nature of the acid added to the electrolyte, which is needed to obtain electrophoretic motion of the N-phenylaniline oligomers, are discussed in detail. Next, other parameters such as ionic strength, injection time, electric field, and temperature were investigated too and their influence on the separation is discussed as well. The existence of a reversed (anodic) electroosmotic flow in a fused-silica capillary containing a THF-methanol mixture under acidic conditions is reported.  相似文献   

11.
A surface modification has been developed which yields fused silica capillaries with switchable electroosmotic flow (anodal/cathodal). The capillary surface is a composite material consisting of unreacted silanol groups, a layer of positively charged quaternary ammonium functions, and a hydrophilic layer of long polyether chains. Because of the presence of positively and negatively charged groups, the net charge of the capillary surface can be varied from positive to negative by changing the pH of the running electrolyte, thus enabling manipulation of the magnitude and direction of the electroosmotic flow. The long polyether chains were effective in shielding biomacromolecules from the charged inner surface of the capillary, thus minimizing electrostatic interaction of the solutes with both unreacted silanols and the quaternary ammonium groups which had been introduced. As a consequence, high separation efficiencies were achieved with proteins, nucleotides, and a series of acidic oligosaccharides.  相似文献   

12.
A new capillary electrophoretic method for the chiral separation of four major Cinchona alkaloids (quinine/quinidine and cinchonine/cinchonidine) was developed using heptakis-(2,6-di-O-methyl)-beta-cyclodextrin as the chiral selector. The inner walls of the separation capillary were modified with a thin polyacrylamide layer, which substantially reduced the electroosmotic flow and improved the chiral resolution and the reproducibility of the migration time of the analytes. Various operation parameters were optimised, including the pH, the capillary temperature, the concentration of the background electrolyte, and the concentration of the chiral selector. Baseline separation of the two diastereomer pairs was achieved in 12 minutes in ammonium acetate background electrolyte pH 5.0 with addition of cyclodextrin in a concentration of 3 mM or higher.  相似文献   

13.
Electrolyte composition is critical in optimizing separation and detection of ions by capillary electrophoresis. The parameters which must be considered when designing an electrolyte system for capillary electrophoresis include electrophoretic mobility of electrolyte constituents and analytes, detection mode, and compatibility of electrolyte constituents with one another. An electrolyte system based on pyromellitic acid is well suited for use with indirect photometric detection, and provides excellent separations of anions. The ability to modify the electrophoretic mobility of pyromellitic acid as a function of ph provides flexibility in matching electrophoretic mobilities of analytes. Additionally, the use of alkyl amines as electroosmotic flow modifiers allows the rapid separation of anions by reversing the direction of electroosmotic flow in a fused-silica capillary. The optimization of a capillary electrophoresis electrolyte for anion analysis is also discussed in terms of pH, ionic strength and applied voltage. The effect of organic solvent on separation selectivity is also discussed.  相似文献   

14.
Five quaternary ammonium cations, including tetramethylammonium, tetraethylammonium, hexadecyltrimethylammonium, benzyltrimethylammonium, and 1‐butyl‐3‐methylimidazolium, have been separated by capillary electrophoresis. A direct ultraviolet method has been achieved when tetrabutylammonium fluoride was the background electrolyte and meso‐octamethylcalix[4]pyrrole was the background electrolyte additive. The ultraviolet spectra of meso‐octamethylcalix[4]pyrrole and cation mixtures showed that redshifts can be attributed to the size of cations, and the maximum absorption wavelength shifted from 218 to 230 nm when tetrabutylammonium cation was substituted with tetramethylammonium cation or tetraethylammonium cation. Conductivity measurements were performed to evaluate the ion‐pairing effect of tetrabutylammonium fluoride in a mixture of acetonitrile/ethanol (80:20, v/v), and the ion‐pairing formation constant, Kip, was calculated (Kip = 14.8 ± 0.3 L/mol) using the Fuoss extended model. Ion pairing also occurs between cations of the analytes and counterion, a fluoride complex of meso‐octamethylcalix[4]pyrrole. The tetramethylammonium cations associate more strongly with this counterion than the tetraethylammonium cation that contributes to the change of selectivity in capillary electrophoresis separation. The effective mobilities of the cations with trimethyl groups, such as tetramethylammonium cation, benzyltrimethylammonium cation, and hexadecyltrimethylammonium cation, decreased faster than others with the increase of meso‐octamethylcalix[4]pyrrole concentration, highlighting the fact that the ion‐pairing effect played an important role in this method.  相似文献   

15.
A new capillary electrophoretic approach for simultaneous separation of fast anions and cations is demonstrated. Indirect UV detection at 214 nm in conjunction with electromigration sampling from both ends of the capillary was developed. Two electrolyte systems based on imidazole-nitrate and copper(II)-ethylenediamine-nitrate were investigated for the simultaneous separation of chloride, sulphate, hydrocarbonate, potassium, ammonium, calcium, sodium and magnesium ions. Experimental parameters that were evaluated included a nature of UV chromophore, pH of electrolyte, a nature of complexing agent. The method permits the excellent separation of three anions and five cations in only 4 min using electrolyte system containing 2.5 mmol l−1 Cu(NO3)2, 5 mmol l−1 ethylenediamine and 1 mmol l−1 fumaric acid at pH 8.5 adjusted with tetraethylammonium hydroxide.  相似文献   

16.
Hopper KG  Leclair H  McCord BR 《Talanta》2005,67(2):304-312
A novel electrolyte has been developed for the simultaneous separation of cations and anions in low explosive residue by capillary electrophoresis. This electrolyte contains 15 mM α-hydroxyisobutyric acid (HIBA) as the buffer, 6 mM imidazole as the cation chromophore, 3 mM 1,3,6-naphthalenetrisulfonic acid (NTS) as the anion chromophore, 4 mM 18-crown-6 ether as a cation selectivity modifier, and 5% (v/v) acetonitrile as an organic modifier. The pH was adjusted to 6.5 using tetramethylammonium hydroxide (TMAOH), an electroosmotic flow modifier. The method was optimized by varying the concentrations of α-HIBA, imidazole, and 1,3,6-NTS at three different pH values. The results provided a simultaneous indirect photometric analysis of both anions and cations with detection limits ranging from 0.5 to 5 ppm for anions and from 10 to 15 ppm for cations with a total run time of under 7 min. The method was then applied to the analysis of Pyrodex® RS and black powder, as well as several smokeless powders. The results obtained were consistent with previously reported results for separate anion and cation analysis and provide a faster, more complete analysis of each sample in a single chromatographic run.  相似文献   

17.
Summary The application of capillary electrophoresis (CE) to the separation and determination of the active ingredient, 10-hydroxy-2-decenoic acid, in royal jelly with direct on-column UV detection at 214 nm is described. Using a cathodic injection and anodic detection scheme, 10-hydroxy-2-decenoic acid (10-HDA) was separated and detected in less than 10 min in a fused silica capillary column with a phosphate buffer at pH 7.3 with an applied voltage of 20 KV followed by direct UV detection. The use of cetyltrimethylammonium bromide (CTAB) as electroosmotic flow modifier allows the rapid separation of 10-HDA from other constituents in royal jelly by reversing the direction of electroosmotic flow. The influence of organic solvents in the electrolyte on separation selectivity is also discussed.  相似文献   

18.
We synthesised and used new type of quaternary ammonium salt [S-(-)-2-hydroxymethyl-1,1-dimethylpyrrolidinium tetrafluoroborate] as effective additive to acidic background electrolytes. We used this quaternary ammonium salt as effective agent for capillary zone electrophoresis separation of model mixture of five tricyclic antidepressants (amitriptyline, nortriptyline, imipramine, desipramine and clomipramine) as model analytes. We observed that addition of S-(-)-2-hydroxymethyl-1,1-dimethylpyrrolidinium tetrafluoroborate ([HMDP](+) [BF(4)](-)) to acidic background electrolytes leads to suppression of magnitude of electroosmotic flow (EOF) and gradually change the direction of the EOF. Baseline separation of five TAs was achieved by using of 91.1 mmol L(-1) (20 gL(-1)) of [HMDP](+) [BF(4)](-) in 25 mmol L(-1) sodium phosphate pH 2.5, where electroosmotic mobility was -11.3 x 10(-9) m(2) V(-1) s(-1). We achieved baseline separation of five TAs with using of [HMDP](+) [BF(4)](-) as water solution too. We observed that [HMDP](+) [BF(4)](-) can be used as buffer additive, which offers relatively smaller anodic electroosmotic flow instead of cationic surfactants that are mostly used for genarating of anodic electroosmotic flow in capillary electrophoresis.  相似文献   

19.
N-Benzoxycarbonylglycyl-L-proline (L-ZGP) has been introduced as a chiral selector for enantioseparation of amines in non-aqueous capillary electrophoresis. Methanol mixed with different proportions of dichloromethane, 1,2-dichloroethane or 2-propanol containing L-ZGP and ammonium acetate was used as the background electrolyte. Enantioseparation of different types of pharmacologically active amines was performed, e.g. the local anaesthetic bupivacaine and the beta-adrenoceptor blocking agent pindolol. Addition of the solvents (dichloromethane, 1,2-dichloroethane or 2-propanol) gave an improved chiral separation partly due to a distinct decrease in the electroosmotic flow. The use of 1,2-dichloroethane in the background electrolyte gave higher precision in migration time (RSD 2.2%) compared to the systems containing dichloromethane. An enantiomeric separation of mepivacaine was performed within 72 s by use of short-end injection with an effective capillary length of 8.5 cm.  相似文献   

20.
A background electrolyte for capillary electrophoresis containing tris(-hydroxymethyl) aminomethane (THAM) and ethanesulfonic acid (ESA) gives excellent efficiency for separation of drug cations with actual theoretical plate numbers as high as 300,000. However, the analyte cations often elute too quickly and consequently offer only a narrow window for separation. The best way to correct this is to induce a reverse electroosmotic flow (EOF) that will spread out the peaks by slowing their migration rates, but this has always been difficult to accomplish in a controlled manner. A new method for producing a variable EOF is described in which a low variable concentration of tributylammonium- or triethylammonium ESA is added to the BGE. The additive equilibrates with the capillary wall to give it a positive charge and thereby produce a controlled opposing EOF. Excellent separations of complex drug mixtures were obtained by this method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号