首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
萃取色层分离同位素稀释ICP-MS测定空气中费克 量钚   总被引:6,自引:0,他引:6  
ICP-MS测定环境样品中超痕量^2^3^9Pu时,^2^3^8UH^+会对m/z239的测量带来干扰。测得UH^+的产生几率为4.6×10^-^5,通过三正辛胺色层分离后,对铀的去除率为10^4,可以有效地去除^2^3^8UH^+离子峰对^2^3^9Pu测定的干扰。钚的回收率为75%。同位素稀释法对^2^3^9Pu的检出限为4.5×10^-^1^5g/mL,方法的定量测定限为16×10^-^1^5g/mL。用所建立的方法测得我国某地区空气中^2^3^9Pu的浓度为4.8×10^-^1^7g/m^3。  相似文献   

2.
《Analytical letters》2012,45(19):1603-1612
Abstract

A method is described for extracting representative uranium and plutonium samples from highly radioactive solutions for isotopic mass spectrometric analysis. Anion resin beads in the nitrate form are used to effect separation from fission products and other actinides. Conditions required to achieve separation are proper adjustment of the uranium and nitric acid concentrations. Once uranium and plutonium are adsorbed, each bead serves as a sample for mass spectrometric analysis, with plutonium and uranium being run sequentially from the same bead. Quantitative determination of the two elements is effected through the technique of isotopic dilution.  相似文献   

3.
Neptunium is sorbed, together with plutonium, uranium and iron on Bio Rad AG 1×4 anion exchange resin from 9 mol/1 HCl, eluted with 7 mol/l HNO3 and 1.2 mol/l HCl, purified on a second, identical column and electrodeposited on stainless steel discs.237Np is determined by -spectrometry,239Np by -spectrometry with a Ge detector, or via its 14.3 keV LX-rays in a Si(Li) measurement. The neptunium yield is determined from the count rate of the 13.6 keV LX rays of the tracer235Np in a later Si(Li) measurement. The average chemical yield is 78±11%. The detection limit for237Np is 1 mBq. The procedure allows the sequential determination of neptunium, together with plutonium, strontium, uranium and iron from one sample. The method was applied to air and total deposition samples from Munich-Neuherberg and to sediment samples from the Irish sea.  相似文献   

4.
A derivative spectrophotometric method has been developed for the simultaneous determination of uranium and plutonium at trace levels in various process streams in 3M HNO3 medium using Arsenazo III. The method was developed with the objective of measuring both uranium and plutonium in the same aliquot in fairly high burn-up fuels. The first derivative absorbances of the uranium and plutonium Arsenazo III complexes at 632 nm and 606.5 nm, respectively, were used for their quantification. Mixed aliquots of uranium (20–28 μg/ml) and plutonium (0.5–1.5 μg/ml) with U/Pu ratio varying from 25 to 40 were analysed using this technique. A relative error of about 5% was obtained for uranium and plutonium. The method is simple, fast and does not require separation of uranium and plutonium. The effect of presence of many fission products, corrosion products and complexing anions on determination of uranium and plutonium was also studied.  相似文献   

5.
Steinnes E 《Talanta》1975,22(12):1041-1042
A radiochemical neutron-activation method for the determination of trace concentrations of uranium in rocks is described. The method is based on separation of 23·5-min 239U after alkaline fusion by extraction with tri-n-butyl phosphate from moderately concentrated nitric acid, followed by measurement of the 74-keV γ-ray with a Ge(Li) detector. The limit of detection is 0·2 ng of U under the present conditions, and the precision at the 0·005 ppm level is about 10%. The method is especially useful for determination of uranium in ultramafic rocks.  相似文献   

6.
Studies on the individual potentiometric determination of uranium and plutonium in a single aliquot have been initiated recently in our laboratory. It was required to adapt the reported procedures (for the precise determination of uranium and plutonium individually when present together in a sample) at various stages to make them suitable for the successive application of the procedures to the same aliquot. Two alternative schemes are proposed in the present work. In the first, plutonium is determined by HClO4 oxidation followed by the determination of total uranium and plutonium by Zn(Hg) reduction. In the second, plutonium is determined by AgO oxidation following the determination of total uranium and plutonium by Zn(Hg) reduction. Amount of uranium is computed in both cases from the difference of two determinations. Precision for the assay of plutonium and uranium was found to be ±0.25% and ±0.35%, respectively, at milligram levels.  相似文献   

7.
We have developed an analytical method for detection of239Pu in aqueous samples at concentrations as low as 10–10M. This nuclear counting technique utilizes the uranium L X-rays, which follow the alpha-decay of plutonium. Because L X-rays are specific for the element and not for the individual isotope, the isotopic composition of the plutonium sample must be known. The counting efficiency in the 11–23 keV range is determined from a plutonium standard, and the concentration of the sample is then calculated from the L X-ray count and the isotopic composition. The total L X-ray count is corrected for possible contributions from other radionuclides present as impurities by measuring the low-energy gamma-spectrum for each contaminant to establish specific photon/X-ray ratios. The ratios are important when241Pu and242Pu are measured, because the respective decay chain members produce non-U L X-rays. This new method can replace the use of labor-intensive radiochemical separation techniques and elaborate activation methods for analysis of239Pu in aqueous samples. It is also applicable for assaying plutonium in liquid wastes that pose possible hazards to the environment.  相似文献   

8.
Atomization processes for uranium in aqueous media and in the presence of a plutonium matrix have been studied and a chemical mechanism is proposed. These studies have been utilized for the determination of uranium in plutonium by Electrothermal Atomization- Atomic Absorption Spectrometry (ETA-AAS) within the constraints of its stable carbide forming tendency and complexity caused by formation of plutonium suboxide at high temperatures. In spite of these limitations the analytical range obtained for determination of uranium is 2.5–100 ng with a sample aliquot of 5 μL containing 5 mg/mL plutonium concentration. The precision of the method is evaluated as 9% RSD. Received: 9 September 1997 / Revised: 29 December 1997 / Accepted: 31 December 1997  相似文献   

9.
The radioactivity concentration of 236Pu, 232U and 228Th in aqueous samples has been determined by means of alpha spectroscopy after chemical separation and pre-concentration of the radionuclides by cation exchange and liquid–liquid extraction using the Chelex-100 resin and 30% TBP/dodecan, respectively. Method calibration using a 236Pu standard solution containing the daughter radionuclides results in a detector efficiency of 18% and in a chemical recovery for cation-exchange which is (30 ± 7)%, (90 ± 5)% and (20 ± 5)% for plutonium, uranium and thorium, respectively. The chemical recovery for liquid–liquid extraction is found to be (60 ± 7)%, (50 ± 5)% and (70 ± 5)%, for plutonium, uranium and thorium, respectively. The differences in the efficiencies can be ascribed to the oxidation states, the different actinides present in solution. Taking into account that the electrodeposition of the radionuclides under study is quantitative, the total method efficiency is calculated to be (18 ± 15)%, (46 ± 7)% and (15 ± 5)%, for plutonium, uranium and thorium, respectively, at the mBq concentration range. The detection limit of the alpha spectrometric system has been found to be 0.2 mBq/L, suggesting that the method could be successfully applied for the radiometric analysis of the studied radionuclides and particularly uranium in aqueous samples.  相似文献   

10.
Oxygen and ammonia were evaluated as reaction gases for the chemical separation between uranium and plutonium in the bandpass reaction cell or dynamic reaction cell (DRC) of the ELAN DRC II mass spectrometer. Both uranium and plutonium demonstrated similar reactivity with oxygen giving rise to corresponding oxides. At the same time, remarkable selectivity in the reaction with ammonia was observed. While uranium was rapidly converted into UNH 2+ and UN2H 4+ , plutonium remained unreactive in the DRC pressurized with ammonia. This difference in the reactivity allowed the determination of plutonium isotopes in urine and water samples containing excess uranium without preceding separation procedure. Detection limits of 0.245, 0.092, 0.270 and 0.237 ng L–1 were obtained for 238Pu, 239Pu, 240Pu and 242Pu, respectively, in urine spiked with 10 g L–1 of U.  相似文献   

11.
A method for the separation and determination of total and isotopic uranium and plutonium by ICP/MS was developed for IAEA samples on cellulose-based media. Preparation of the IAEA samples involved a series of redox chemistries and separations using TRU® resin (Eichrom). The sample introduction system, an APEX nebulizer (Elemental Scientific, Inc.), provided enhanced nebulization for a several-fold increase in sensitivity and reduction in background. Application of mass bias (ALPHA) correction factors greatly improved the precision of the data. By combining the enhancements of chemical separation, instrumentation and data processing, detection levels for uranium and plutonium approached high attogram levels.  相似文献   

12.
A new functionalized mesoporous silica (MCM-41) using salicylaldehyde was utilized for the separation, preconcentration and determination of uranium in natural water by inductively coupled plasma atomic emission spectrometry (ICP-AES).Experimental conditions for effective adsorption of trace levels of U(VI) were optimized. The preconcentration factor was 100 (1.0 mL of elution for a 100 mL sample volume). The analytical curve was linear in the range 2-1000 μg L−1 and the detection limit was 0.5 ng mL−1. The relative standard deviation (R.S.D.) under optimum conditions was 2.5% (n = 10). Common coexisting ions did not interfere with the separation and determination of uranium at pH 5. The sorbent exhibited excellent stability and its sorption capacity under optimum conditions has been found to be 10 mg of uranium per gram of sorbent. The method was applied for the recovery and determination of uranium in different water samples.  相似文献   

13.
A ratio derivative spectrophotometric method has been developed for the simultaneous determination of uranium and plutonium at mg levels in 1M HNO3 medium. In this method the overlapping spectra of uranium and plutonium are well resolved by making use of the first derivative of the ratios of their direct absorption spectra. The derivative ratio absorbances of uranium and plutonium are measured at 411.2 and 473.8 nm, respectively for their quantification. The method is simple, fast and does not require separation of uranium and plutonium. Another salient feature of the method is that it does not lead to generation of analytical waste thereby minimising the efforts required for the recovery of plutonium. Uranium in the conc. range of 10–25 mg/g and plutonium in the conc. range of 0.5 to 2 mg/g (U/Pu ratio varying from about 10 to 25) were determined in the same aliquot with a precision and accuracy of about 0.5% and 1%, respectively.  相似文献   

14.
An isotopic dilution method is described for the determination ot plutonium in samples of irradiated uranium using a 242Pu tracer. An aliquot of tracer is added to the sample and the mixture treated to ensure isotopic exchange; plutonium is then separated by an ion exchange procedure and an isotopic analysis made using an M.S.5. mass spectrometer. The precision (3 σ) for an aliquot containing 0.1 μg plutonium is 0.6%. A possible application of the method would be its use for control analyses of the feed solution in a chemical plant processing natural uranium fuel elements as, for example, the Windscale primary separation plant.  相似文献   

15.
The potentiometric determination of uranium is widely carried out in phosphoric acid medium to suppress the interferences of plutonium by complexation. Owing to the complexity of the recycling plutonium from the phosphate based waste involving manifold stages of separation, a method has been proposed in the present paper which does not use phosphoric acid. Uranium and plutonium are reduced to U/IV/ and Pu/III/ in 1M H2SO4 by Ti/III/, and NaNO2 is chosen to selectively oxidize Pu/III/ and the excess of Ti/III/. The unreacted NaNO2 is destroyed by sulphamic acid and excess Fe/III/ is added following dilution. The equivalent amount of Fe/II/ thus liberated is titrated against standard K2Cr2O7. R.S.D. obtained for the determination of uranium /1–2 mg/ is 0.3% with plutonium being present upto 4.0 mg.  相似文献   

16.
A novel detection technique employing X-ray diffraction (XRD) to screen for Special Nuclear Materials (SNMs), in particular for uranium, has been recently proposed. It is based on the interesting fact that uranium (and incidentally, plutonium) has a non-cubic lattice structure, in contrast to all other non-SNM, high-density elements of the Periodic Table. The principle of this screening technique is briefly elucidated by comparing the XRD lines of uranium with those of lead, a material of high atomic number (Z) commonly found in container traffic.Several physical conditions that must be satisfied to enable XRD for SNM screening are considered. To achieve adequate penetration, both of suspicious high-Z materials and their containers, photon energies of 1 MeV and above must be employed. Implications from partial coherence theory for the XRD measurement geometry at such photon energies are presented. The question of multiple scatter degradation of the coherent scatter signal is addressed.Technological considerations relevant to performing XRD at 1 MeV, particularly regarding the radiation source and detector, are discussed. A novel secondary aperture scheme permitting high energy XRD is presented. It is concluded that the importance of the application and the prospect of its feasibility are sufficient to warrant experimental verification.  相似文献   

17.
An improved and rapid method for determination of90Sr via its daughter nuclide,90Y, in aqueous samples from the low-level radioactive wastes by Cerenkov counting was established. This technique is applicable to beta particles maximum energies greater than 0.263 MeV in aqueous solution. A comparison of90Sr determination by Cerenkov counting and standard wet chemical separation techniques indicates a high degree of correlation and excellent agreement. For a 20 ml aqueous sample following the prescribed experimental conditions and a 60 min counting interval, the detection limit was 0.20 dpm/ml (0.10 pCi/ml), and the relative deviation is less then 5%.  相似文献   

18.
A double-focusing Glow Discharge Mass Spectrometer (GDMS) installed in a glovebox for nuclear sample screening has been employed for isotopic measurements. Isotopic compositions of zirconium, silicon, lithium, boron, uranium and plutonium which are elements of nuclear concern have been determined. Interferences arising from the matrix sample and the discharge gas (Ar) for each of these elements are discussed. The GDMS results are compared with those from Thermal Ionization Mass Spectrometry (TIMS). For boron and lithium at g/g-ng/g levels, the two methods gave results in good agreement. In samples containing uranium the isotopic composition obtained by GDMS was in agreement with those from TIMS independently of the enrichment. Attempts for the determination of plutonium isotopic composition were also made. In this case, due to the interferences of uranium at mass 238 and americium at mass 241, the GDMS raw data are complementary with those values obtained from physical non-destructive techniques.  相似文献   

19.
Avivar J  Ferrer L  Casas M  Cerdà V 《Talanta》2011,84(5):1221-1227
The hyphenation of lab-on-valve (LOV) and multisyringe flow analysis (MSFIA), coupled to a long path length liquid waveguide capillary cell (LWCC), allows the spectrophotometric determination of uranium in different types of environmental sample matrices, without any manual pre-treatment, and achieving high selectivity and sensitivity levels. On-line separation and preconcentration of uranium is carried out by means of UTEVA resin. The potential of the LOV-MSFIA makes possible the fully automation of the system by the in-line regeneration of the column. After elution, uranium(VI) is spectrophotometrically detected after reaction with arsenazo-III. The determination of levels of uranium present in environmental samples is required in order to establish an environmental control. Thus, we propose a rapid, cheap and fully automated method to determine uranium(VI) in environmental samples. The limit of detection reached is 1.9 ηg of uranium and depending on the preconcentrated volume; it results in ppt levels (10.3 ηg L−1). Different water sample matrices (seawater, well water, freshwater, tap water and mineral water) and a phosphogypsum sample (with natural uranium content) were satisfactorily analyzed.  相似文献   

20.
A radiochemical method for the determination of plutonium in urine is described. The steps involved are a) co-precipitation of plutonium, b) wet ashing, c) hydrolysis, d) extraction from 2M HNO3 into capillary polypropylene columns coated with tri-n-octyl phosphineoxide 0.5M in toluene, and e) back-extraction of plutonium from the organic phase, f) electroplating onto stainless steel disks and spectrometry, since plutonium is extracted together with small amounts of uranium naturally occurring in urine. High quality deposits for spectrometry are obtained because iron interference is eliminated before back-extraction. The radiochemical recovery of239Pu is 55.6±7.5% and the detection limit is 1.0 mBq per liter of urine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号