首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We review recent results of experimental and theoretical studies of superfluid3He spin dynamics at ultra low temperature, where density of the normal component is virtually zero. We describe a number of new phenomena: catastrophic relaxation, NMR in the Landau field, surface instability of homogeneous precession, persistent NMR signal etc. We propose that superfluid3He in the ultralow temperature limit may provide a system for the experimental modelling of nonequilibrium quantum field theories.  相似文献   

2.
29Si, 27Al, 1H and 23Na solid-state magic-angle spinning (MAS) nuclear magnetic resonance (NMR) has been used to relate nominal composition, bonding character and compressive strength properties in aluminosilicate inorganic polymers (AIPs). The 29Si chemical shift varies systematically with Si-to-Al ratio, indicating that the immediate structural environment of Si is altering with nominal composition. Fast 1H MAS and 29Si T SiH/T relaxation measurements demonstrated that occluded pore H2O mobility within the disordered cavities is slow in comparison with H2O mobility characteristics observed within the ordered channel structures of zeolites. The 27Al MAS NMR data show that the Al coordination remains predominantly 4-coordinate. In comparison with the 29Si MAS data, the corresponding 27Al MAS line shapes are relatively narrow, suggesting that the AlO4 tetrahedral geometry is largely unperturbed and the dominant source of structural disorder is propagated by large distributions of Si–O bond angles and bond lengths. Corresponding 23Na MAS and multiple-quantum MAS NMR data indicate that Na speciation is dominated by distributions of hydration states; however, more highly resolved 23Na resonances observed in some preparations supported the existence of short-range order. New structural elements are proposed to account for the existence of these Na resonances and an improved model for the structure of AIPs has also been proposed. Authors' address: John V. Hanna, NMR Facility, Institute of Materials and Engineering Science, Lucas Heights Research Laboratories, Australian Nuclear Science and Technology Organisation, Private Mail Bag 1, Menai, NSW 2234, Australia  相似文献   

3.
Density functional theory together with statistical thermodynamics based on the equilibrium constants method and concept of orientational entropy were applied to reproduce the temperature dependences of 1H and 17O nuclear magnetic resonance (NMR) chemical shifts in liquid water. Despite a rather simple theoretical model, a satisfactory agreement between calculated NMR quantities and corresponding experimental data was found. By using only a single adjustable parameter of arbitrary directionality, we succeeded to imitate the first-order temperature effect for both (1H and 17O) NMR signals in the neat water. 1H and 17O magnetic shielding tensors of water molecules in various water clusters have been calculated using the density functional theory. The full geometry optimization was performed using Becke's three-parameter hybrid method and the Lee–Yang–Parr correlation functional (B3LYP) combined with 6-311++G** basis set. Magnetic shielding tensors have been calculated using the modified hybrid functional of Perdew, Burke and Ernzerhof, and the gauge-including atomic orbital approach was applied to ensure gauge invariance of the results. Solvent effects were taken into account by the polarized continuum model. Authors' address: Vytautas Balevicius, Faculty of Physics, Vilnius University, Sauletekio 9, Vilnius 10222, Lithuania  相似文献   

4.
Li0.48Na0.35CoO2 lithium-sodium cobaltite was studied by means of wide-line 23Na and 7Li NMR. A series of quantum-chemical calculations allowed to us determine the optimum positions of Li and Na atoms, to construct a map of the densities of electronic states near the Fermi level, and to estimate the electric field gradient on the Na nuclei. The results from these calculations are compared with experimental data from NMR and X-ray photoelectron spectroscopy  相似文献   

5.
We present the elastic scattering of the 6He+208Pb and the 6He+197Au systems at the laboratory energy of E lab=27 MeV within the framework of the McIntyre parametrization, and systematically investigate χ 2/N analysis of both systems to obtain an excellent agreement between the theoretical results and the experimental data. We find large diffusivity parameters indicating long range absorption mechanisms. We also show that both systems lack both the nuclear and the Coulomb rainbow scattering for obtained S-matrix parameters.  相似文献   

6.
The properties of liquid 3He in a low-density aerogel preliminarily covered with a few monolayers of 4He were studied by pulsed and nonlinear CW NMR techniques. It was found that an NMR frequency shift from the Larmor value exhibits a sharp increase at a magnetization tilting angle exceeding 104°. Nonlinear CW NMR signals related to the formation of a macroscopic region featuring homogeneous precession of the magnetization (homogeneous precession domain) were observed. The experimental results confirm that the low-temperature superfluid 3He phase in the aerogel is analogous to the B-phase in bulk 3He and indicate that the spin supercurrents play an important role in the spin dynamics of superfluid 3He in aerogel.  相似文献   

7.
Results of studies of non-stoichiometric CuInS2 semiconductor by 63Cu and 115In nuclear magnetic resonance are presented. It was established that deviation of the composition from stoichiometry causes a quadrupolebroadened region of the NMR spectrum to change most. In this case a central peak whose shape is governed by the chemical shift anisotropy remains unaffected. NMR spectra reveal two types of structural distortions in the nearest surroundings of the In atoms.  相似文献   

8.
1H and 19F spin-lattice relaxation times in polycrystalline diammonium hexafluorozirconate have been measured in the temperature range of 10–400 K to elucidate the molecular motion of both cation and anion. Interesting features such as translational diffusion at higher temperatures, molecular reorientational motion of both cation and anion groups at intermediate temperatures and quantum rotational tunneling of the ammonium group at lower temperatures have been observed. Nuclear magnetic resonance (NMR) relaxation time results correlate well with the NMR second moment and conductivity studies reported earlier.  相似文献   

9.
Matrine and oxymatrine were extracted fromSophora flavescens, and their1H and13C nuclear magnetic resonances (NMR) were unambiguously assigned by a combination of different two-dimensional 2-D1H-13C and1H-1H correlation experiments of HMQC, HMQC-TOCSY and MAXY. The technique of using those experiments to make the assignment of the heavily overlapped spectrum is demonstrated. The coupling constants of matrine were measured by 2-DJ-resolved spectrum and 1-D spectra extracted from the slices of 2-D MAXY spectrum. The stereochemistry of the titled compounds was established from the NMR spectroscopy.  相似文献   

10.
The synthesized base compound CuGaTe2 and the Mn-doped compounds Cu0.97Ga0.97Mn0.06Te2 and Cu0.93Ga0.93Mn0.14Te2 have been investigated by using 63Cu and 69Ga NMR spectroscopy. The NMR spectra obtained testify to substantial structural distortions near the cationic positions in the crystal lattice of Mndoped samples. The constants of quadrupole coupling between 63Cu and 69Ga nuclei in the compounds investigated have been estimated.  相似文献   

11.
Based on the proposed theory, we have investigated the shape of the NMR absorption spectra for 13C and 29Si nuclei in diamond and silicon crystals attributable to the internuclear dipole–dipole interaction. In accordance with the available experimental data, we have considered both crystals with a 100% content of magnetoactive isotopes and crystals with a comparatively low dilution by nonmagnetic nuclei. The time correlation functions (the first of which is the Fourier transform of the NMR spectrum) arising in an infinite chain of coupled differential equations are shown to be mutually similar with a slight time delay. The proposed theory allows the spectrum to be calculated analytically. The results obtained agree satisfactorily with the experimental ones. It is noted that the mutual similarity of the time correlation functions is probably a corollary of the development of dynamical chaos in the system  相似文献   

12.
27Al magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectra were acquired at 8.45, 14.1 and 16.45 T for a series of aluminium borates with the mullite structure (Al6−x B x O9, where x has nominal values of 1 to 4) augmented with 27Al multiple-quantum MAS NMR spectra at 8.45 T. Even though the 27Al NMR spectra are complex, simulation of the combined set of data produced a relatively well-defined set of parameters (e.g., quadrupolar interaction, isotropic chemical shift, etc.) for each site. The 11B MAS NMR spectra of the same compounds were also acquired at 14.1 T. Linear changes in the X-ray a-, b- and c-cell parameters with composition suggest that these compounds constitute a continuous series. Based on a Rietveld structural refinement of the compound synthesized as Al4B2O9, the resulting site occupancies and relative site distortions allow the identification of particular sites with specific NM resonances. Changes in the 27Al and 11B MAS NMR spectra of the related compounds with x = 1–4 show at the lowest Al contents a greater degree of asymmetry in the Al sites of the octahedral chains. A fairly distorted cross-linking tetrahedral site, which persists throughout the composition range, is accompanied in the lower Al compositions by two 5-fold coordinated Al–O units which are replaced by two more-regular tetrahedral Al–O sites as the Al content increases. In the compounds of lowest Al composition (i.e., highest B content) both the tetrahedral and trigonal cross-linking sites are distinguishable, but as the Al content increases, the BO4 units progressively disappear. Authors' address: Kenneth J. D. MacKenzie, School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand  相似文献   

13.
The temperature dependence of 23Na spin-lattice relaxation in the polycrystalline Rochelle salt was studied by NMR within the range from 235 to 320 K covering both Curie points. The spin-relaxation time t 1 versus temperature curve showed noticeable dips near the phase transitions against the background of the regular decrease in the relaxation time upon increasing temperature. The dips observed were ascribed to critical contributions to sodium spin-lattice relaxation caused by the slowdown of the correlation time for one of two relaxation modes in the Rochelle salt. The 23Na NMR parameters were also measured for the melted Rochelle salt. This article was submitted by the authors in English.  相似文献   

14.
The effects of the 57Fe isotope content and high-frequency magnetic field amplitude h 1 on the shape of the NMR spectrum of multiferroic BiFeO3 at T = 4.2 K are studied by pulsed nuclear magnetic resonance. The NMR spectrum shape and transverse relaxation time T 2 are found to depend strongly on the 57Fe isotope content and h 1 in multiferroic BiFeO3 in the presence of a spatial spin-modulated structure of a cycloid type. In a sample with a high 57Fe isotope content, the Suhl-Nakamura interaction contributes substantially to T 2. When these dynamic effects are taken into account for analysis of the NMR spectrum shape, an undisturbed (without an anharmonicity effect) spatial spin-modulated structure of a cycloid type is shown to exist in BiFeO3.  相似文献   

15.
16.
We have studied 12C in full kinematics via the 10B(3He,pααα) reaction at an energy of 2.45 MeV. In our data we have identified states in 12C from the ground state up to about 18 MeV, with spins ranging from 0 to 4. Due to the very good resolution, we are able to determine properties of these 12C resonances, such as their energy, width, and spin. In this contribution preliminary results from the ongoing analysis are presented. Main focus on the precise determination of the breakup spectra for all resonances.  相似文献   

17.
In this paper, the cross section of the 4He + 64Zn and 6He + 64Zn reactions, at bombarding energies above and below the fusion barrier, has been investigated. Soft-core nucleon-nucleon interaction and the Monte Carlo method have been employed for studying the nuclear potential of the projectile-target system. One adjustable parameter has been chosen in this study. This parameter can change the depth of the soft-core potential. It has to be adjusted so that the calculated elastic scattering and fusion cross sections are in acceptable agreement with experimental data. Our results indicate that an increase in energy decreases the depth parameter of the soft-core nucleon-nucleon potential obtained from careful analysis the 4He + 64Zn and 6He + 64Zn reactions. Likewise, by comparing the results obtained from both reactions, one can observe that the calculated depth parameter for the reaction related to 6He is larger than that for 4He at the same energy, in particular at the sub-barrier energies. We try to explain this behavior.  相似文献   

18.
The spin kinetics of liquid 3He in contact with a mixture of LaF3 (99.67%) and DyF3 (0.33%) micropowders at temperatures of 1.5–3 K has been studied by pulsed nuclear magnetic resonance (NMR). The DyF3 is a dipolar dielectric ferromagnet with the phase transition temperature Tc= 2.55 K, whereas the diamagnetic fluoride LaF3 is a diluting substance for the optimal observation conditions of 3Не NMR in powder pores. The magnetic phase transition in DyF3 is accompanied by a considerable change in the character of fluctuations of the magnetic moments of dysprosium ions, which affect the spin kinetics of 3Не in contact with the substrate. Significant changes in the relaxations rates of the longitudinal and transverse magnetizations of 3Не have been discovered in the region of magnetic ordering of the solid matrix. The technique of studying the static and fluctuating magnetic fields of a solid matrix at low temperatures using liquid 3He as a probe has been proposed.  相似文献   

19.
77Se nuclear magnetic resonance (NMR) measurements in the Bi2Se3 topological insulator single crystal were carried out at temperatures 15.8, 88, and 293 K. Bismuth selenide single crystalline plate was studied in the orientation when the crystallographic c-axis was parallel to the external magnetic field B0. We observed two component NMR spectra at the three temperatures. It was shown that the NMR spectrum almost did not move with decreasing temperature and the density of charge carriers did not follow the thermal activation law.  相似文献   

20.
The spectra of neutrons from the (p, n) reactions on 47Ti, 48Ti, 49Ti, 53Cr, and 54Cr nuclei were measured in the proton-energy range 7–11 MeV. The measurements were performed with the aid of a fast-neutron spectrometer by the time-of-flight method over the base of the EGP-15 tandem accelerator of the Institute for Physics and Power Engineering (IPPE, Obninsk). Owing to a high resolution and a high stability of the time-of-flight spectrometer used, low-lying discrete levels could be identified reliably along with a continuum section of neutron spectra. An analysis of measured data was performed within the statistical equilibrium and preequilibrium models of nuclear reactions. The relevant calculations were performed by using the exact formalism of Hauser-Feshbach statistical theory supplemented with the generalized model of a superfluid nucleus, the back-shifted Fermi gas model, and the Gilbert-Cameron composite formula for the nuclear level density. The nuclear level densities for 47V, 48V, 49V, 53Mn, and 54Mn were determined along with their energy dependences and model parameters. The results are discussed together with available experimental data and recommendations of model systematics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号