首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The singularities of the time autocorrelation functions (ACFs) of magnetically diluted spin systems with dipole–dipole interaction (DDI), which determine the high-frequency asymptotics of autocorrelation functions and the wings of a magnetic resonance line, are studied. Using the self-consistent fluctuating local field approximation, nonlinear equations are derived for autocorrelation functions averaged over the independent random arrangement of spins (magnetic atoms) in a diamagnetic lattice with different spin concentrations. The equations take into account the specificity of the dipole–dipole interaction. First, due to its axial symmetry in a strong static magnetic field, the autocorrelation functions of longitudinal and transverse spin components are described by different equations. Second, the long-range type of the dipole–dipole interaction is taken into account by separating contributions into the local field from distant and near spins. The recurrent equations are obtained for the expansion coefficients of autocorrelation functions in power series in time. From them, the numerical value of the coordinate of the nearest singularity of the autocorrelation function is found on the imaginary time axis, which is equal to the radius of convergence of these expansions. It is shown that in the strong dilution case, the logarithmic concentration dependence of the coordinate of the singularity is observed, which is caused by the presence of a cluster of near spins whose fraction is small but contribution to the modulation frequency is large. As an example a silicon crystal with different 29Si concentrations in magnetic fields directed along three crystallographic axes is considered.  相似文献   

2.
The one-dimensional spin facilitated kinetic Ising model is studied analytically using the master equation and by simulations. The local state of the spins (corresponding to mobile and immobile cells) can change depending on the state of the neighbored spins, which reflects the high cooperativity inherent in glassy materials. The short-time behavior is analyzed using a Fock space representation for the master equation. The hierarchy of evolution equations for the averaged spin state and the time dependence of the spin autocorrelation function are calculated with different methods (mean-field theory, expansion in powers of the time, partial summation) and compared with numerical simulations. The long-time behavior can be obtained by mapping the one-dimensional spin facilitated kinetic Ising model onto a one-dimensional diffusion model containing birth and death processes. The resulting master equation is solved by van Kampen's size expansion, which leads to a Langevin equation with Gaussian noise. The predicted autocorrelation function and the global memory offer in the long-time limit a screened algebraic decay and a stretched exponential decay, respectively, consistent with numerical simulations.  相似文献   

3.
The autocorrelation function of an impurity spin in an infinite chain of spins withX-Y-coupling moving in a critical magnetic field is shown to be an example of “Onsager separation” with a hydrodynamic branch point singularity. By reason of this type of singularity the hydrodynamic part of the autocorrelation function is longranged in time. It appears that the phenomenological part of the statistical entropy production associated with the impurity spin relaxation in the critical field is positive.  相似文献   

4.
The singularities of the time autocorrelation functions (ACFs) for a heteronuclear spin system of a crystal are investigated. Exact expressions are obtained for ten moments of the spectra of ACFs in the approximation of a self-consistent fluctuating field (SCFF) with arbitrary axial symmetry. These expressions are applied to determine the coordinate of the lowest singular point of these functions on the imaginary-time axis for a spin system with a dipole-dipole interaction (DDI). The leading corrections to this coordinate due to the correlation of local fields in real crystals are calculated. These corrections are determined by lattice sums with triangles of four bonds and pairs of four bonds. Numerical values of the coordinate are obtained for a LiF crystal in a magnetic field directed along three crystallographic axes. An increase in the coordinate of the singular point, which follows from the theory and leads to a faster falloff of the wings of the ACF spectra, qualitatively agrees with experiment.  相似文献   

5.
The effective Hamiltonian of the Suhl-Nakamura interaction of nuclear spins in a helimagnet has been constructed for the case where an external magnetic field is applied perpendicular to the axis of the helicoid. The contribution from the intraboundary and intradomain spin excitations to the parameter and effective radius of this interaction has been calculated. The second moment and local broadening of the NMR absorption line, which are determined by the indirect interaction of the nuclear spins, have also been calculated.  相似文献   

6.
7.
A theoretical study was made of magnetic field-dependent dipolar relaxation in two- and three-spin systems. The results for the nuclear magnetic relaxation dispersion (NMRD) curves were compared with those for the simpler model of fluctuating local fields. For both models it was found that at low fields spins tend to relax with a common T 1-relaxation time. Sharp features in the NMRD curves coming from nuclear spin level anti-crossings are also predicted by both models. However, the simple model fails to describe the behavior of so-called long-lived spin states (LLS). We have studied the LLS as function of magnetic field and molecular geometry and simulated experimental results for the LLS in histidine amino acid obtained at the laboratory of Prof. H.-M. Vieth (Free University Berlin, Germany). In addition, we described polarization transfer in a three-spin system where two spins are protons, which are initially hyperpolarized by para-hydrogen induced polarization (PHIP), while the third spin is a spin ½ hetero-nucleus, which acquires polarization in the course of cross-relaxation.  相似文献   

8.
Static zero field Gaussian Kubo — Toyabe relaxation functions for muons in isotropic muonium atoms are presented. That is, as with diamagnetic muons, an average of the spin dynamics of a muon in an isolated isotropic ground state muonium atom is taken over an isotropic Gaussian continuous classical local random magnetic field distribution. This motion approximates the exact quantal spin dynamics generated by the dipole-dipole interactions between the muonium atom and the surrounding nuclear spins associated with the site at which the muonium atom has stopped. Expressions are derived for triplet muonium only since, in general, singlet muonium is not observed. For normal nuclear spins and ground state muonium, the resulting relaxation functions are identical to the standard diamagnetic function (except for a shift in the time scale).  相似文献   

9.
Singular points of spin autocorrelation functions on the imaginary time axis, which determine the arguments of exponential high-frequency asymptotic behaviors, have been analyzed. It has been shown that randomly distributed inhomogeneous magnetic fields expand the wings of spectra of autocorrelation functions and, thereby, intensify the heating of a system subjected to variable magnetic fields, which are used to create effective Hamiltonians or at the saturation of inhomogeneously broadened EPR lines.  相似文献   

10.
The autocorrelation function of an impurity spin in an infinite chain of spins withX-Y-coupling in thermal equilibrium is shown to be an example of “Onsager separation”. This separability ensures that the statistical entropy production associated with the impurity spin relaxation contains a phenomenological part which proves to be always positive.  相似文献   

11.
The magnetic phase diagrams of axial third-nearest-neighbour Ising (A3NNI) model under an external field have been studied by means of the molecular field approximation. The phase boundaries among paramagnetic, (anti)ferromagnetic and various modulated phases are determined by analysing the frequency-dependent susceptibility, or by solving the coupled equations for magnetisations for spins up to 17, iteratively. The resultant phase diagram is found to be very consistent with the exact results for the ground state spin ordering and to be far improved than existing finite temperature phase diagrams for the same model.  相似文献   

12.
Changes in the Onsager reaction field are used to account quantitatively for aging (the decrease in the magnetic susceptibility when cooling in zero field is halted below the glass temperature) and rejuvenation (the disappearance of aging phenomena on further cooling only to reappear at Tw on heating) that characterize spin glasses. These effects must be caused by interactions between the spins since, absent the interactions, the magnetic properties of N spins are just N times the magnetic property of a single spin that cannot display aging. A spin introduced at an empty site with a nonzero field becomes polarized, and the polarized spin in turn polarizes its neighbors, thereby changing the local field. This additional field is the Onsager reaction field. Ma's theory for the reaction field in spin glasses [PRB 22, 4484 (1980)10.1103/PhysRevB.22.4484] has been extended to provide a spin-glass model that can account for the experimental data.  相似文献   

13.
We investigate the dynamical behavior of finite rings of classical spin vectors interacting via nearest-neighbor isotropic exchange in an external magnetic field. Our approach is to utilize the solutions of a continuum version of the discrete spin equations of motion (EOM) which we derive by assuming continuous modulations of spin wave solutions of the EOM for discrete spins. This continuum EOM reduces to the Landau-Lifshitz equation in a particular limiting regime. The usefulness of the continuum EOM is demonstrated by the fact that the time-evolved numerical solutions of the discrete spin EOM closely track the corresponding time-evolved solutions of the continuum equation. It is of special interest that our continuum EOM possesses soliton solutions, and we find that these characteristics are also exhibited by the corresponding solutions of the discrete EOM. The robustness of solitons is demonstrated by considering cases where initial states are truncated versions of soliton states and by numerical simulations of the discrete EOM equations when the spins are coupled to a heat bath at finite temperatures.  相似文献   

14.
Spin oscillations and their phase synchronization are discovered in a spin 1D waveguide (nanowire) after the local injection of a spin-polarized current in the vertical (perpendicular) geometry of magnetization. The mode composition of nonlinear spin self-oscillations is analyzed for a single nano-oscillator using the effect of spin transfer torque with regard to spin wave runaway over the 1D waveguide and synchronized spin self-oscillations at current pumping by two nano-oscillators. It is shown specifically that, along with simple (“nontopological”) oscillation modes, in which singular points in the oscillation amplitude spatial distribution are absent, the 1D waveguide may support modes with pole-type singular points inside the current pumping domain, which are characteristic of the geometry of a precessing 2π-domain boundary. A diagram for frequency- and current-detuning-synchronized spin self-oscillations that are excited by two spin nano-oscillators in the 1D spin waveguide is constructed.  相似文献   

15.
The rate equations describing spin polarization in a system of three spins are derived and solved for the case of a free radical dissolved in a solvent containing two nuclear spins. Triple irradiation experiments indicate that a nuclear spin A can be effectively coupled to an electron spin C via a second nuclear spin B and measurements of both the steady state and transient Overhauser effects are in accord with the theoretical predictions for a three-spin system. The ‘three spin effect’ is found to operate only in dilute solutions of free radicals in which case the probabilities for transitions between different nuclear or electronic energy levels can be determined. It was found to be effective for fluorine nuclei—in the presence of both protons and a free radical and for carbon [13] nuclei in the presence of either protons or fluorine nuclei and a free radical. Detailed measurements have been performed for CHFCl2, para-difluorobenzene, and meta-fluorotoluene containing the tritertiary butyl phenoxyl radical.  相似文献   

16.
The features of the nonlinear dynamics of three-component elastic pulses in a low-temperature crystal containing paramagnetic impurities of electron and nuclear spins have been analyzed in the slowly varying envelope approximation. The presence of the electron spin subsystem makes it possible to equate the velocities of longitudinal sound and transverse acoustic waves; as a result, all components of the strain field efficiently interact with each other through the nuclear spin subsystem. The system of equations for envelopes of harmonics of the components of the strain field and the spin variables has been derived. The relations between the amplitudes and phases of the components have been obtained, the spectral composition has been analyzed, and the regimes of acoustic transparency of three-component longitudinal-transverse pulses have been discussed.  相似文献   

17.
Maxwell’s equations in the Majorana form are extended to the case of a orthogonal curvilinear system of coordinates. The optical Magnus effect is considered as an example. The results obtained are extended to massless spin particles with half-integer spins.  相似文献   

18.
We herein explain the phase of spin glass by reference to finite block spin theory, in which the phase of the spin glass may be considered as being a ferromagnetic ordering between block spins comprised of random spins that have a majority of individual spins in a given sense. By making use of the Curie law of block spins, we obtained the magnetization, susceptibility, and specific heat for the lower and higher temperature approximations of the Brillouin function. Both the susceptibility and the specific heat thus obtained are in good agreement with existing experimental data, although in the latter case the agreement is less convincing near absolute zero temperature.  相似文献   

19.
A method has been developed for determining magnetic and electrical characteristics of film nanostructures containing magnetic nanoparticles from dispersion curves of surface spin waves propagating in these nanostructures. The dispersion curves of spin waves are determined by the dynamics of the spin component described by the generalized Landau-Lifshitz equations and an alternating electromagnetic field induced by a spin wave. Since spin waves are very sensitive to inhomogeneity of magnetic parameters, spin disorder, and conductivity of an object near or inside which these waves propagate, they can be used for determining magnetic and electrical characteristics of the objects under investigation. The developed calculation method, which can be employed both in spin-wave spectroscopy and in analysis of dispersion curves obtained by other methods, has been used for determining parameters of heterostructures consisting of a SiO2 film with Co nanoparticles on a GaAs substrate. It has been found from the shape of dispersion curves of the surface spin waves that, in the film near the interface, spins of the nanoparticles are close to a ferromagnetic ordering, whereas near the free surface, the spin orientation of nanoparticles is more chaotic. It has been revealed that a conducting layer is formed in GaAs, and the SiO2(Co) film near the interface has an increased conductivity.  相似文献   

20.
We investigate entanglement of spin pairs in alternating open spin chains (s = 1/2) with spin-spin interactions (SSI) in the thermodynamic equilibrium state in an external magnetic field. The reduced density matrix of an arbitrarily chosen spin pair was calculated. The entanglement of a spin pair was evaluated with the Wootters criterion. The temperature at which the entangled state arises in the chosen pair was determined. Entanglement (concurrence) is shown to oscillate as a function of the position of a spin pair in the chain. The results demonstrate the dependence of the entanglement in arbitrarily chosen pairs of neighboring spins on the temperature, the position of the spin pair in the chain, chain length, and the ratio between the SSI constants. Qualitative explanation of these dependences is offered. The role of the terminal spins in the generation of entanglement is explained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号