首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 760 毫秒
1.
Er^3 -doped TeO2-WO3-ZnO glasses were prepared and the absorption spectra, emission spectra and fluorescence lifetimes were measured. With more Te02 content in the glasses, the emission full width at half maximum (FWHM) increases while the lifetime of the ^4I13/2 level of Er^3 decreases. The stimulated emission cross-sectionof Er^3 calculated by the McCumber theory is as large as 0.86pm^2. The product of the FWHM and the emissioncross-section σe of Er^3 in TeO2-WO3-ZnO glass is larger than those in other glasses, which indicates that the glasses are promising candidates for Er^3 -doped broadband amplifiers. The Judd-Otfelt parameter Ω6 shows close composition dependence of the 1.5μm emission bandwidth. The more the TeO2 content is, the larger thevalues of Ω6 and FWHM.  相似文献   

2.
Erbium-doped glasses showing a wide 1.55μm emission band are reported in a novel heavy metal oxyfluoride glass system SiO_2-PbO-PbF_2 and their optical properties such as emission spectra, fluorescence lifetime and the refractive index have been investigated. The broad and flat {}^4I_{13/2}→{}^4I_{15/2} emission of Er^{3+} ions around 1.55μm can be used as host materials for potential optical amplifiers in wavelength-division-multiplexing network system. We find that with increasing PbF_2 content in the glass composition, the fluorescence full width at half maximum and fluorescence lifetime of the {}^4I_{13/2} level of Er^{3+} increase, while refractive index and density decrease.  相似文献   

3.
We report the spectroscopic properties and thermal stability of Tm^3+-doped Ga2O3-GeO2-Bi2O3-PbO(PbF2) glasses for 1.47-μm optical amplifications. Effects of PbF2 doping on the optical properties and thermal stability of Tm^3+ -doped gallate-germanium-bismuth-lead glass are inestigated. The measured peak wavelength and full width at half-maximum of the fluorescence are 1465nm and - 120 nm, respectively: Siguificant enhancement of the 1.47-μm emission and the lifetime of a a^3H4 level with increasing PbF2 doping have been observed. The presence of GeO2 provides two potentials of increasing the thermal stability and shortening the ultraviolet cutoff band of host glasses.  相似文献   

4.
Erbium-doped glass showing the wider 1.5-um emission band is reported in a novel oxide system TeO2-WO3-Nb2O5 and their thermal stability and optical properties such as absorption, emission spectra, cross-sections and fluorescence lifetime were investigated. Compared with other glass hosts, the gain bandwidth properties of Er3+ in TWN glass is close to that of bismuth glasses, and larger than those of tellurite, germanate, silicate and phosphate glasses. The broad and flat 4I13/2-4I15/2 emission and the large stimulated emission cross-section of Er3+ ions around 1.5um can be used as host material for potential broadband optical amplifier in the wavelength-division-multiplexing (WDM) network system.  相似文献   

5.
Erbium-doped glass showing the wider 1.5-/μm emission band is reported in a novel oxide system TeO2-WO3-Nb2O5 and their thermal stability and optical properties such as absorption,emission spectra,cross-sections and fluorescence lifetime were investigated.Compared with other glass hosts,the gain bandwidthproperties of Er3+ in TWN glass is close to that of bismuth glasses,and larger than those of tellurite,germanatc,silicate and phosphate glasses.The broad and flat 4I13/2 → 4I15/2 emission and the largestimulated emission cross-section of Er3+ ions around 1.5 μm can be used as host material for potentialbroadband optical amplifier in the wavelength-division-multiplexing(WDM)network system.  相似文献   

6.
The green and red up-conversion emissions centred at about 534, 549 and 663 nm of wavelength, corresponding respectively to the ^2H11/2 → ^4I15/2, ^4S3/2 → ^4I15/2 and ^4F9/2 → ^4I15/2 transitions of Er^3+ ions, have been observed for the Er^3+-doped silicate glass excited by a 978 nm semiconductor laser beam. Excitation power dependent behaviour of the up-conversion emission intensity indicates that a two-photon absorption up-conversion process is responsible for the green and red up-conversion emissions. The temperature dependence of the green up-conversion emissions is also studied in a temperature range of 296-673 K, which shows that Er^3+-doped silicate glass can be used as a sensor in high-temperature measurement.  相似文献   

7.
The absorption,stimulated emission cross section and potential laser parameters of heavy metal silicate glasses doped with Yb^3 ions have been investigated.The emission cross section has been evaluated by using the measured absoprtion spectra and principle of reciprocity.It is found that Yb^3 in SiO2-Bi2O3-B2O3 glass has high stimulated emission cross section of 0.09pm^2 for the 2F5/1→2F7/2 transition and exists short measured fluorescence lifetime of 0.78ms.On the other hand,the stimulated emission cross section of Yb^3 -doped SiO2-PbO glass was 0.49pm^2,Its measured fluorescence lifetime was 2.00ms.Evaluated from the good potential laser parameters,Yb^3 -doped SiO2-PbO glass may be a good candidate for fibre laser applications.  相似文献   

8.
A tellurite fibre of TeO_{2}-ZnO-La_{2}O_{3}-Li_{2}O glass codoped with 20000 ppm ytterbium and 5000 ppm erbium was fabricated by the suction casting and rod-in-tube technologies. The absorption spectrum of Er^{3+}/Yb^{3+} -codoped bulk glass has been measured. From the Judd-Ofelt intensity parameters, the spontaneous emission probability and radiative lifetime τ_{rad} of Er^{3+}:{}^{4}I_{13/2}→{}^{4}I_{15/2} transition for the bulk glass have been calculated. The emission fluorescence spectra and lifetimes around 1.5μm, and subsequent upconversion fluorescence in the range of 500-700nm were measured in fibres and compared with those in bulk glass. The changes in amplified spontaneous emission with fibre length and pumping power was also measured. It was found that the emission spectrum from erbium in fibres is almost twice as broad as the corresponding spectrum in bulk glass when pumped at 980nm.  相似文献   

9.
房永征  廖梅松  胡丽丽 《中国物理》2007,16(6):1736-1742
Er^3+-doped lithium-potassium mixed alkali aluminophosphate glasses belonging to the oxide system xK2O-(15-x)Li2O-4B2O3-11Al2O3-5BaO-65P2O5 are obtained in a semi-continuous melting quenching process. Spectroscopic properties of Er^3+-doped glass matrix have been analysed by fitting the experimental data with the standard Judd-Ofelt theory. It is observed that Judd-Ofelt intensity parameters Ωt(t = 2, 4 and 6) of Er^3+ change when the second alkali is introduced into glass matrix. The variation of line strength Sed[^4I13/2,^4I15/2] follows the same trend as that of the/26 parameter. The effect of mixed alkali on the spectroscopic properties of the aluminophosphate glasses, such as absorption cross-section, stimulated emission cross-section, spontaneous emission probability, branching ratio and the radiative lifetime, has also been investigated in this paper.  相似文献   

10.
Fluorescence of Tm^3+/Er^3+ codoped bismuth-silica (BS) glasses and the sensitization of Ce^3+ are investigated, It shows that Ce^3+ codoping with Tm^3+/Er^3+ in BS glasses results in a quenching of Tm^3+ ion emission from ^3F4 to the ^3H6 level. Consequently, the 1.47μm emission occurs after the population inversion between the ^3H4 and ^3F4 levels. Furthermore, the codoped glasses show the broad emission spectra over the whole S and C bands with full-width at half-maximum (FWHM) up to about 119nm, as it combines 1.55μm emission band of Er^3+ with 1.47μm emission band of Tm^3+ under 800hm excitation.  相似文献   

11.
The upconversion properties of Er^3+-doped heavy metal oxyfluoride germanate glasses under 975 nm excitation have been investigated. The intense green (551 and 529 nm) and relatively weak red (657 nm) emissions corresponding to the transitions ^4S3/2→^4I15/2, ^2H11/2→^4 I15/2 and ^4F9/2 →^4I15/2, respectively, were simultaneously observed at room temperature. The content of PbF2 has an important influence on the upconversion luminescence emission. With increasing content of PbF2, the intensities of green (529 nm) and red (657 nm) emissions increase slightly, while the green emission (551 nm) increases markedly. These results suggest that PbF2 has an influence on the green (551 nm) emission more than on the green (529 nm) and red (657 nm) emissions.  相似文献   

12.
Using the technique of high-temperature melting, a new Er 3+ /Yb 3+ co-doped fluorophosphate glass was prepared. The absorption and fluorescence spectra were investigated in depth. The effect of Er 3+ and Yb 3+ concentration on the spectroscopic properties of the glass sample was also discussed. According to the Judd–Ofelt theory, the oscillator strength was computed. The lifetime of 4 I 13/2 level (τ m ) of Er 3+ ions was 8.23 ms, and the full width at half maximum of the dominating emission peak was 68 nm at 1.53 μm. The large stimulated emission cross section of the Er 3+ was calculated by the McCumber theory. The spectroscopic properties of Er 3+ ion were compared with those in different glasses. The full width at half maximum and σ e are larger than those of other glass hosts, indicating this studied glass may be a potentially useful candidate for high-gain erbium-doped fiber amplifier.  相似文献   

13.
Three kinds of Er^3+-doped tellurite glasses with different hydroxyl groups are prepared by the conventional melt-quenching method. Infrared spectra are measured to estimate the exact content of OH^- groups in samples. The maximum phonon energy in glasses are obtained by measuring the Raman scattering spectra. The strength parameters Ωt (t = 2, 4, 6) for all the samples are calculated and compared. The nonradiative decay rate of the Er^3+ ^4I13/2 → ^4I15/2 transition are calculated for the glass samples with different phonon energy and OH^- group contents. Finally, the effect of OH^- groups on fluorescence decay rate of Er^3+ is analysed, the constant KOH-Er of TWN, TZPL and TZL glasses are calculated to be 9.2 × 10^-19 cm^4s^-1, 5.9 × 10^-19 cm^4s^-1, and 3.5 × 10^-19 cm^4s^-1, respectively.  相似文献   

14.
Er3+-doped heavy metal borosilicate glasses were prepared using conventional melting and quenching method. The emission spectra of 4I13/2 → 4I15/2 transition were observed upon excitation at 974 nm and the lifetime of 4I13/2 level of Er3+ was measured. Based on these data, the fluorescence properties of Er3+ are investigated on the emission and gain characteristics at the 1.5 μm bands. In particular, the effect of relative heavy metal content on fluorescence properties is discussed.  相似文献   

15.
A compositional adjusting method called the mixed former effect is proposed to improve effectively optical properties such as the emission cross sectionk,the fluorescence full width at half maximum(FWHM)and the lifetime of the 4I13/2 level of Er-doped glass.A kind of Er-0doped bismuth-based glass illustrated high emission cross section (σe^p=0.66-0.90pm^2),large fluorescence FWHM(68-85nm),and relatively long lifetime of the ^4I13/2 level(Tm=1.6-4.3ms) using this method.A comparison of spectroscopic parameters shows that bismuth based glass is much better for broadband amplifiers than other glass hosts.  相似文献   

16.
We investigate the upconversion luminescence of Er3^ and Tm^3 codoped tellurite glasses under both the 975 and 80Ohm excitations. By Tm^3 codoping, the Er^3 green emission corresponding to the (^4S3/2, 2H11/2) → 4I15/2 transitions was quenched, while the red emission corresponding to the ^4F9/2 → ^4I15/2 transition was selectively sensitized. The red emission has a maximum in the range where the ratio of Er^3 - to Tm^3 -content is about two and its fluorescence intensity becomes 1.5 and 5 times larger at the maximum than those in the absence of Tm^3 for 975 and 800 nm excitations, respectively. The results were explained considering the influence of energy transfers between these two active ions.  相似文献   

17.
李涛  张勤远  姜中宏 《中国物理》2007,16(4):1155-1158
We have investigated infrared-to-visible upconversion luminescence of Er^3+ in bismuth-lead-germanate glasses. The UV cutoff wavelength is shortened while its lifetime is increased almost linearly, with PbF2 substituting for PbO in the bismuth-lead germanate glasses. Three emissions centred at around 529, 545 and 657 nm are clearly observed, which are identified as originating from the ^2H11/2→^4 I15/2,^4S3/2→^4 I15/2 and ^4 F9/2 →^4 I15/2 transitions, respectively. It is noted that all the upconversion emission intensities increase with PbF2 concentration increasing. The ratio between the intensities of red and green emissions increases with the increasing of PbF2 content. Energy transfer processes and nonradiative phonon-assisted decays account for the populations of the ^2 H11/2,^4 S3/2 and ^4F 9/2 levels. The quadratic dependence of fluorescence on excitation laser power confirms a two-photon process to contribute to the upconversion emissions.  相似文献   

18.
Er^{3+}-doped lead chloride tellurite glasses were prepared using the conventional melting and quenching method. The absorption spectra were measured and the Judd-Ofelt analysis was performed. The spectroscopic parameters such as the intensity parameters, transition probabilities, radiative lifetimes, and branching ratios were obtained. Intense infrared emission and visible upconversion luminescence under 976 nm excitation were observed. For the 1.55μm emission, the full width at half maximum and the emission cross sections are more than 50 nm and 8×10^{- 20}cm^2, respectively. Three efficient visible luminescences centred at 525, 547, and 658nm are assigned to the transitions from the excited states {}^{2}H_{11/2}, {}^{4}S_{3/2}, and {}^{4}F_{9/2} to the ground state {}^{4}I_{15/2}, respectively. The upconversion mechanisms and the power-dependent intensities are also discussed and evaluated.  相似文献   

19.
Er^3+-doped phosphor-tellurite glass for broadband short-length Er^3+-doped fiber amplifier (EDFA) is fabricated and characterized. The differential value (AT) of onset crystalline temperature (Tx) and glass transition temperature (Tg) is 206 ℃. The stimulated emission cross section of Er^3+ is calculated from absorption spectrum by McCumber theory and is 0.87 × 10 ^-20 cm^2 at 1532 nm. A broad 1.5-μm fluorescence spectrum with 54-nm full-width at half maximum (FWHM) is demonstrated. Especially, the maximum phonon energy of undoped phosphor-tellurite glass is 1100 cm^- 1, which restricts the upconversion luminescence. It is possible to pump efficiently at 980 nm. These results indicate Er^3+-doped phosphor-tellurite glass is suitable for fabricating broadband short-length EDFA.  相似文献   

20.
Using the technique of high-temperature melting, a new Er3+/Yb3+ co-doped fluorophosphate glass was prepared. The absorption and fluorescence spectra were investigated in depth. The effect of Er3+ and Yb3+ concentration on the spectroscopic properties of the glass sample was also discussed. According to the Judd Ofelt theory, the oscillator strength was computed. The lifetime of 4113/2 level (t-m) of Er3+ ions was 8.23 ms, and the full width at half maximum of the dominating emission peak was 68 nm at 1.53 μm. The large stimulated emission cross section of the Er3+ was calculated by the McCumher theory. The spectroscopic properties of Er3+ ion were compared with those in different glasses. The full width at half maximum and σe are larger than those of other glass hosts, indicating this studied glass may be a potentially useful candidate for high-gain erbium-doped fiber amplifier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号