首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laboratory-scale experiments were performed to evaluate the humidity effect on toluene decomposition by using a wire-plate dielectric barrier discharge (DBD) reactor at room temperature and atmospheric pressure. The toluene decomposition efficiency as well as the carbon dioxide selectivity with/without water in a gas stream of N2 with 5% O2 was investigated. Under the optimal humidity of 0.2% the characteristics of toluene decomposition in various background gas, including air, N2 with 500 ppm O2, and N2 with 5% O2 were observed. In addition, the influence of a catalyst on the decomposition was studied at selected humidities. It was found that the optimum toluene removal efficiency was achieved by the gas stream containing 0.2% H2O, since the presence of water enhanced the CO2 selectivity. In addition, the toluene removal efficiency increased significantly in a dry gas stream but decreased with an increase in the humidity when the Co3O4/Al2O3/nickel foam catalyst was introduced into the discharge area.  相似文献   

2.
Catalytic gas-phase abatement of air containing 250 ppm of isopropanol (IPA) was carried out with a novel dielectric barrier discharge (DBD) reactor with the inner catalytic electrode made of sintered metal fibers (SMF). The optimization of the reactor performance was carried out by varying the voltage from 12.5 to 22.5 kV and the frequency in the range 200–275 Hz. The performance was significantly improved by modifying SMF with Mn and Co oxide. Under the experimental conditions used, the MnO x /SMF showed a higher activity towards total oxidation of IPA as compared to CoO x /SMF and SMF electrodes. The complete destruction of 250 ppm of IPA was attained with a specific input energy of ∼235 J/L using the MnO x /SMF catalytic electrode, whereas, the total oxidation was achieved at 760 J/L. The better performance of the MnO x /SMF compared to other catalytic electrodes suggests the formation of short-lived active species on its surface by the in-situ decomposition of ozone.  相似文献   

3.
The conversion of CO 2 and (CH 4+CO 2 ) mixtures to CO, at room temperature and atmospheric pressure conditions, in pulsed corona discharges, was investigated. Conversion of pure CO 2 was 16.8% at 10 cm 3 -min –1 flow rate, which corresponds to 75 mol-min –1 rate of conversion. The CO 2 conversion was improved to 38% (85 mol-min –1 by feeding the reactor with CH 4+CO 2 gas mixture (1:1 ratio), simultaneously with CH 4 conversion of 46% (102.7 mol-min –1 ) at 10 cm 3 -min –1 flow rate of feed gases and 9 W power conditions. Rate of CO production is increased from 110 to 180 mol-min –1 with the variation of feed gas (CH 4+CO 2 mixture, 1:1 ratio) flow rate from 10 to 40 cm 3 -min –1 at 9W, which corresponds to energy efficiency of 2.5 to 4.1%. Highest energy yield of 25 g/kWh for CH 4 conversion, 29 g/kWh for CO 2 conversion, and 33 g/kWh for CO production were achieved.  相似文献   

4.
The dependence of gliding arc gas discharge characteristics, including gas flow field, arc column motion and volatile organic compounds (VOCs) decomposition performance, on reactor configuration parameters was investigated based on numerical simulation and laboratory experimental findings. For a given supply voltage (10 kV) and a certain nozzle outlet diameter (1.5 mm), increasing the electrodes gap (1–4 mm) or decreasing vertical distance between electrode throat and nozzle outlet (25–10 mm) will increase the gas flow rate through the electrode throat, the gas velocity in the plasma region, the arc column velocity, the maximum attainable position of the arc column and the electrical power consumption, also, higher VOCs decomposition rate and lower specific energy requirement are observed according to the n-butane and toluene decomposition experiments.  相似文献   

5.
脉冲放电氦光离子化检测器分析有机化合物的性能研究   总被引:2,自引:0,他引:2  
研究本实验室组装的脉冲放电氦光离子化检测系统上PDPID的性能、各种操作参数对信号的影响、操作最佳化及信号线性。用该系统分析了汽油、酮醇混合物和痕量挥发性有机化合物等样品,它们的色谱图可以同FID相比。  相似文献   

6.
Positive and negative streamer discharges in atmospheric pressure air were generated in a shielded sliding discharge reactor at operating voltages as low as 5 kV for a gap length of 1.6 cm. In this reactor, electrodes are placed on top of a dielectric layer and one of the electrodes, generally the one on ground potential, is connected to a conductive layer on the opposite side of the dielectric. The energy per pulse, at the same applied voltage, was more than a factor of seven higher than that of pulsed corona discharges, and more than a factor of two higher than that of sliding discharges without a shield. It is explained on the basis of enhanced electric fields, particularly at the plasma emitting electrode. Specific input energy required for 50 % removal from ~1,000 ppm initial NO could be reduced to ~18 eV/molecule when ozone in the exhaust of negative streamers was utilized. For sliding discharges and pulsed corona discharges this value was ~25 eV/molecule and it was 35 eV/molecule for positive shielded sliding discharges. Also, the ozone energy yield from dry air was up to ~130 g/kW h and highest for negative streamer discharges in shielded sliding discharge reactors. The high energy density in negative streamer discharges in the shielded discharge reactor at the relatively low applied voltages might not only allow expansion of basic studies on negative streamers, but also open the path to industrial applications, which have so far been focused on positive streamer discharges.  相似文献   

7.
Plasma Chemistry and Plasma Processing - The novel three-electrode underwater pulse discharge excited by two independent high-voltage sources was used for the synthesis of W-Mo mixed oxide...  相似文献   

8.
A pulsed corona discharge in multiwire-plate geometry, generated above water was studied for the removal of organic compounds in liquids. The degradation of methylene blue (MB) and the formation of hydrogen peroxide (H2O2) were investigated. The MB solution was rapidly decolorized, evidencing the degradation of the dye after approximately 10 min plasma treatment. Nitrate, formate, sulphate and chlorine ions have been detected in the treated solution, explaining partly the change in the solution properties with plasma exposure, i.e. increase of electrical conductivity and decrease of pH. It was found that the concentration of H2O2 generated in water increased with plasma exposure time, reaching 200 mg/L after 30 min treatment. In the MB solution less hydrogen peroxide was detected, suggesting reactions with the dye and its degradation products. The addition of FeCl2 catalyst had a slight favorable effect on methylene blue degradation due to Fenton’s reaction. It was observed that MB and H2O2 concentrations continue to decrease after the plasma treatment was stopped, suggesting that active species which accumulate in the solution may react post-plasma with methylene blue and its degradation products.  相似文献   

9.
介质阻挡放电引发氮氧化物等离子体化学反应   总被引:3,自引:0,他引:3  
在523 K介质阻挡放电条件下,研究了不同气体组分体系中NO的转化.实验表明,在无氧体系(NO/N2)中,转化的NO主要分解为N2和O2.在富氧(NO/O2/N2)条件下,由于NO和NO2的生成, NO的转化率最低.体系中加入C2H4(NO/C2H4/N2)时, NO转化率与NO/N2体系几乎一样,与NO相比,生成的O更易与C2H4作用,几乎没有NO2的生成.当C2H4和O2共存时(NO/O2/C2H4/N2),NO主要被氧化为NO2.当能量密度为125 J•L-1时, 与其它体系相比,NO/O2/C2H4/N2体系中NO转化率和NO2生成量最大,转化每个 NO分子能耗最小(61 eV).体系中C2H4主要被氧化为CO.四个体系中N2O的生成量都较少.讨论了介质阻挡放电条件下上述四个体系可能的反应机制.  相似文献   

10.
High Energy Chemistry - The feasibility of direct oxidation of benzene to phenol by oxygen or air in dielectric-barrier discharge (DBD) under conditions of effective removal of the products from...  相似文献   

11.
We investigated the reduction of electrical energy consumption in thepulsed corona discharge process for the removal of nitrogenoxides. Hydrocarbon chemical additives used in the laboratory-scaleexperiment are responsible for the enhancement of the NO conversionthrough the chain reactions of free radicals, such as, R, RCO, RO,and others. Electrical energy consumption per converted NO moleculehas a minimum value of 17 eV when pentanol is injected. When ethyleneand propylene are injected, 30 and 22 eV of electrical energy consumptionare required for the conversion of a NO molecule, respectively. The ratioof the pulse-forming capacitance (Ce) to the reactor capacitance (CR)plays an important role in the energy transfer efficiency to thereactor. The maximum energy transfer efficiency of approximately 72%could be obtained by the pulse-forming capacitance, which is 3.4 timeslarger than the reactor capacitance; the maximum NO conversionefficiency was also observed with the same condition.  相似文献   

12.
The conversion of a 1:1 CH 4 /CO 2 mixture to H 2 and CO was shown to occur at ambient temperature in a silent discharge reactor. Conversions of up to 50% were achieved with two reactors in series with a total residence time of 3 min at 13kV and 25 mA.  相似文献   

13.
The kinetics of cyclohexane oxidation in a barrier discharge reactor was simulated for a single voltage pulse. A significant difference between the yields of O3 obtained experimentally (not detected) and theoretically (15.5 wt %) suggests that O3 was absent from the reaction mixture because of a fast reaction between O(3 P) and an excited cyclohexane molecule. This hypothesis was indirectly supported by experimental data on the oxidation of a mixture of n-hexane and cyclohexene (50 : 50 wt %). The integrated rate constant of the reaction of O(3 P) with n-hexane was 1.4 × 10–12 cm3/s, which is an order of magnitude higher than the published value 1.2 × 10–13 cm3/s.  相似文献   

14.
Low temperature conversion of CH4 and CO2 was investigated in a coaxial dielectric barrier discharge reactor at ambient pressure. Main parameters, including the input power, the residence time, the discharge gap, the molar ratio of the feed gases and the multi-stage ionization design were evaluated to understand the ways to improve the conversion of greenhouse gases and reduce the output of by-products. At certain input power, the conversion of CH4 and CO2 can reach 0.797 and 0.527, respectively, when the molar ratio of CH4/CO2 is one. When this ratio was low to 1:5, the conversion of CH4 was promoted to 0.843 and the selectivity to CO and H2 was almost 100%. The multi-stage ionization favored the conversion of CO2, which would also be an efficient design to promote the selectivity to the main products such as CO and H2 and suppress the selectivity to the by-products.  相似文献   

15.
In sample measurements, matrix effects are unavoidable. The matrix effects are one of the main factors affecting the accuracy of the pulsed electrolyte cathode atmospheric pressure discharge detection system. The stability of sodium, potassium, and magnesium, under optimized parameters is measured; the relative standard deviation of spectral intensity is found to be no more than 2%; and the relative standard deviation of background intensity is less than 2%. The matrix effects on the elements potassium, sodium, and magnesium were studied, and the experiments showed that high concentrations of sodium and potassium interfere with each other. A concentration of 200?mg?L?1 K+ affected the sodium signal with an enhancement of more than 120%; and the K+ intensity increased 20% in the presence of a high concentration of 200?mL?1 Na+. In high concentrations of sodium or potassium, the elemental signal for magnesium enhancement was approximately 8%. Sodium, potassium, and magnesium were quantitatively determined using a mixed calibration sample. When sodium, potassium, and magnesium are present at low concentrations in solution, there were no obvious matrix effects. The sodium, potassium, and magnesium in the calibration samples are quantitatively determined. The relative error and precision are less than 3%, and the recoveries are less than 105%. The detection limits for sodium, potassium, and magnesium were found to be 2.1, 3.4, and 92.6?µg?L?1, respectively.  相似文献   

16.
Spark, stream and corona pulsed high-voltage discharges in water induced by the various initial conductivities have been examined in this paper. The discharge modes changed from spark to corona discharge with the liquid conductivity increasing. The apparent production of OH radical and quantum yield generated by spark discharge in distilled water were 11.57 gmol/L and 0.0978 photon/s, respectively. A preliminary study on acid fuchsine (AF) treatment indicated that higher AF removal efficiency has been achieved by spark discharge. The process of degradation showed that the oxidative effects through OH radical oxidation did not play an important role and did increase with the discharge mode changing to spark discharge.  相似文献   

17.
The influence of catalyst electric conductivity on methane activation in a planar-type dielectric barrier discharge reactor is investigated by empirically comparing the degree of methane conversion of bare Al2O3 with that of Pt/Al2O3; from this, it is determined that the latter catalyst converts less methane owing to the presence of Pt. Calculations and comparisons of electric fields with and without Pt show that the presence of a Pt catalyst results in a lower electric field than does bare Al2O3. An analysis of product gases based on the correlation between the fragmentation of radicals and the electric field also indicates that the electric field is decreased by using Pt. From these results, it can be concluded that the synergies between the plasma and the conductive catalysts need to be reassessed for different electric field conditions, and that further studies of non-conductive catalysts that can enhance methane activation and synergistic effects are needed.  相似文献   

18.
We demonstrate a sequential nucleophilic substitution of highly electrophilic and inexpensive phosphorus trichloride with three different alcohols in a continuous-flow reactor. A variety of alcohols including ones that contained acid- and/or basic-labile functionalities were rapidly reacted. A over nucleophilic substitution that occurred during reaction of the second alcohol was suppressed by the addition of imidazole. Density functional theory calculations of the sequential nucleophilic substitutions of alcohols were performed both with and without imidazole, and Berry pseudorotation was suggested as a rate-limiting step in both cases. Herein, we discuss the reasons for the decreased selectivity in the absence of imidazole as well as those for improved selectivity in the presence of imidazole during the second nucleophilic substitution.  相似文献   

19.
With increasing demand for perfumes, flavors, beverages, and pharmaceuticals, the various associated industries are resorting to different approaches to enhance yields of desired compounds. The use of fixed-bed biocatalytic reactors in some of the processes for making fine chemicals will be of great value because the reaction times could be reduced substantially as well as high conversion and yields obtained. In the current study, a continuous-flow packed-bed reactor of immobilized Candida antarctica lipase B (Novozym 435) was employed for synthesis of various geraniol esters. Optimization of process parameters such as biocatalyst screening, effect of solvent, mole ratio, temperature and acyl donors was studied in a continuous-flow packed-bed reactor. Maximum conversion of ~ 87% of geranyl propionate was achieved in 15 min residence time at 70 °C using geraniol and propionic acid with a 1:1 mol ratio. Novozym 435 was found to be the most active and stable biocatalyst among all tested. Ternary complex mechanism with propionic acid inhibition was found to fit the data.  相似文献   

20.
The plasma process has the potential to serve as a low cost mercury oxidation technology that will facilitate elemental mercury removal in a downstream of Flue Gas Desulfurization system. The performance of the main gas constituents, such as H2O, O2 and HCl on elemental mercury oxidation under plasma atmosphere was investigated in simulated flue gas. Experiments were carried out in a dielectric barrier discharge reactor operated at 140?°C. Photochemical effects of nanocrystalline titania on oxidation of elemental mercury were also tested. The results indicated that both H2O and O2 promote the oxidation of elemental mercury significantly. Active radicals generated by ionization, such as O, O2 and OH, play the crucial roles in oxidation process. The presence of HCl in N2/O2 stream in plasma system is a very effective way of oxidizing elemental mercury, the nearly complete oxidation of elemental mercury was observed by 4?kV of applied voltage only. The best photocatalytic activity of anatase TiO2 which was calcined at 600?°C was found in our tests. Compared with the plasma process alone, the oxidation efficiency increased 18.7?C26.3?% with the addition of photocatalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号