共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We investigated the energetic stability, electronic, and magnetic properties of hydrogenated graphene nanoflakes (GNFs) by using density-functional theory (DFT). Hydrogenated GNFs were found to be the stable heterojunction structures. As the increase of H coverage, a transition of a small-gap semiconductor to wide-gap semiconductor occurs, accompanied with a nonmagnetic (with the coverage χ=0) → magnetic (with the coverage 0<χ<1) → nonmagnetic (with the coverage χ=1) transfer for hexagonal nanoflakes and magnetic (with the coverage 0?χ<1) → nonmagnetic (with the coverage χ=1) transfer for triangular nanoflakes. The efficacious tune of band gaps and the magnetic moments on these nanoflakes by hydrogenation offers an effectual avenue for the applications of C-based nanomagnets. 相似文献
3.
Yanan TangZongxian Yang Xianqi Dai 《Journal of magnetism and magnetic materials》2011,323(20):2441-2447
The adsorption energies, stable configurations, electronic structures, and magnetic properties of the graphene with noble metal (NM=Pt, Ag, and Au) atom adsorption were investigated using first-principles density-functional theory. It is found that the bridge site is the most stable adsorption site for the Pt adatom; the Ag adatom can be stabilized almost equally at the bridge or the top site, while the Au adatom prefers to be adsorbed at top site. The Pt-graphene interaction is stronger than the interaction of Ag-graphene and Au-graphene, since the Pt atom has an unsaturated electronic d-shell (d9s1). While there is no net magnetic moment for the Pt adatom, the Ag and Au adatoms still exhibit magnetic character on the graphene. The magnetic moments of the NM-graphene systems may be quenched (e.g., Pt-graphene), reduced (e.g., Ag-graphene) or not changed (e.g., Au-graphene) as compared with the values before adsorption. Therefore, the magnetic character of the adatom-graphene system can be turned by adsorbing different NM atoms on the graphene. 相似文献
4.
Based on a recursive Green's function method, we investigate the conductance of mesoscopic graphene rings in the presence of disorder, in the limit of phase coherent transport. Two models of disorder are considered: edge disorder and surface disorder. Our simulations show that the conductance decreases exponentially with the edge disorder and the surface disorder. In the presence of flux, a clear Aharonov-Bohm conductance oscillation with the period Φ0 (Φ0=h/e) is observed. The edge disorder and the surface disorder have no effect on the period of AB oscillation. The amplitudes of AB oscillations vary with gate voltage and flux, which is consistent with the previous results. Additionally, ballistic rectification and negative differential resistance are observed in I-V curves, with on/off characteristic. 相似文献
5.
We investigate the shot noise properties in a monolayer graphene superlattice modulated by N parallel ferromagnets deposited on a dielectric layer. It is found that for the antiparallel magnetization configuration or when magnetic field is zero the new Dirac-like point appears in graphene superlattice. The transport is almost forbidden at this new Dirac-like point, and the Fano factor reaches its maximum value 1/3. In the parallel magnetization configuration as the number of magnetic barriers increases, the shot noise increases. In this case, the transmission can be blocked by the magnetic–electric barrier and the Fano factor approaches 1, which is dramatically distinguishable from that in antiparallel alignment. The results may be helpful to control the electron transport in graphene-based electronic devices. 相似文献
6.
Using transfer matrix method, transport properties in graphene based double velocity-barrier structures under magnetic and electric fields are numerically studied. It is found that velocity barriers for the velocity ratio (the Fermi velocity inside the barrier to that outside the barrier) less than one (or for the velocity ratio greater than one) have properties similar to electrostatic wells (or barriers). The velocity barriers for the velocity ratio greater than one significantly enlarge the resonant tunneling region of electrostatic barriers. In the presence of magnetic field, the plateau width of the Fano factor with a Poissonian value shortens (or broadens) for the case of the velocity ratio less than one (or greater than one). When the Fermi energy is equal to the electrostatic barrier height, for different values of the velocity ratio, both the conductivities and the Fano factors remain fixed. 相似文献
7.
It was recently reported that a kind of graphene line defect can be fabricated in a controllable experimental way. In the present work we theoretically investigate the band structure and the electronic transport properties of a graphene superlattice formed by embedding periodically line defects in the graphene lattice. Based on the calculated results, we suggest that such a superlattice can be used as a quantum wire array which can carry much larger current than a single graphene nanoribbon. A remarkable advantage of this superlattice over other quantum wires is that the electronic transport in it is insensitive to scattering effects except that the scattering potential range is smaller than the graphene lattice constant. Moreover, we find that the anisotropy of the Dirac cone presented in this superlattice has a nontrivial influence on the universal minimal conductivity and the sub-Poissonian shot noise of graphene. 相似文献
8.
Based on the transfer-matrix method, a systematic investigation of electron transport properties is done in a monolayer graphene modulated by the realistic magnetic field and the Schottky metal stripe. The strong dependence of the electron transmission and the conductance on the incident angle of carriers is clearly seen. The height, position as well as width of the barrier also play an important role on the electron transport properties. These interesting results are very useful for understanding the tunneling mechanism in the monolayer graphene and helpful for designing the graphene-based electrical device modulated by the realistic magnetic field and the electrical barrier. 相似文献
9.
We study the electron transport properties of graphene anti-dot and periodic graphene anti-dot arrays using the nonequilibrium Green?s function method and Landauer–Büttiker formula. Fano resonant peaks are observed in the vicinity of Fermi energy, because discrete states coexist with continuum energy states. These peaks move closer to Fermi energy with increasing the width of anti-dots, but move away from the Fermi energy with increasing the length of anti-dots. When N periodic anti-dots exist in the longitude direction, a rapid fluctuation appears in the conductance with varying resonance peaks, which is mainly from the local resonances created by quasibound state. When P periodic anti-dots exist in the transverse direction, P-fold resonant splitting peaks are observed around the Fermi energy, owing to the symmetric and antisymmetric superposition of quasibound states. 相似文献
10.
R. T. Tagiyeva 《Pramana》2004,63(3):633-641
Localized magnetic polaritons are investigated in the systems consisting of two magnetic superlattices, coupled by a ferromagnetic
contact layer. The general dispersion relation for localized magnetic polaritons are derived in the framework of the electromagnetic
wave theory in the Voigt geometry by the ‘transfer’ matrix method. The numerical calculations were carried out for different
parameters of the superlattices and contact layer and then discussed. 相似文献
11.
A valid method is used to extend the omnidirectional electronic gap (OEG) of Gaussian gapped graphene superlattices (GSLs) heterostructure. The heterostructure consists of two superlattices with different width ratios of potentials. Each superlattice comprises a periodic repetition of a unit cell consisting of 21 layers with the potential voltages varying according to a Gaussian function and another layer with a fixed potential voltage. The potential width ratios of constituent Gaussian gapped GSL are established utilizing the lower and upper energy edges of omnidirectional electronic gap depending on the width ratio of potentials. Moreover, it is shown that the width of OEG of the heterostructure is sensitive to lattice constant, which can be applicable to the development of graphene-based electronics. 相似文献
12.
In this work the conducting properties of graphene lattice (buckled as well as planar) having different concentrations of defects are studied with the help of real space block recursion method introduced by Haydock et al. Since the defects are completely random, reciprocal space based methods which need artificial periodicity are not applicable here. Different resonant states appear because of the presence of topological and local defects which are calculated within the framework of Green function. Except random voids, in all other density of states (DOS) spectra there are signatures of Breit–Wigner and Fano resonance at occupied and unoccupied regime respectively. Although Fano resonance states are not prominent for graphene with random voids, however Stone–Wales (SW) type defect can naturally introduce their resonance states. The appearance of localized states depends strongly on the concentration of defects. 相似文献
13.
《Physics letters. A》2014,378(18-19):1321-1325
The transport properties of graphene/metal (Cu(111), Al(111), Ag(111), and Au(111)) planar junction are investigated using the first-principles nonequilibrium Green's function method. The planar junction induce second transmission minimum (TM2) below the Fermi level due to the existence of the Dirac point of clamped graphene. Interestingly, no matter the graphene is p- or n-type doped by the metal substrate, the TM2 always locates below the Fermi level. We find that the position of the TM2 is not only determined by the doping effect of metal lead on the graphene, but also influenced by the electrostatic potential of the metal substrate and the work function difference between the clamped and suspended graphene. 相似文献
14.
Structural, electronic, and magnetic properties of pristine and oxygen-adsorbed graphene nanoribbons
The structural, electronic and magnetic properties of pristine and oxygen-adsorbed (3,0) zigzag and (6,1) armchair graphene nanoribbons have been investigated theoretically, by employing the ab initio pseudopotential method within the density functional scheme. The zigzag nanoribbon is more stable with antiferromagnetically coupled edges, and is semiconducting. The armchair nanoribbon does not show any preference for magnetic ordering and is semiconducting. The oxygen molecule in its triplet state is adsorbed most stably at the edge of the zigzag nanoribbon. The Stoner metallic behaviour of the ferromagnetic nanoribbons and the Slater insulating (ground state) behaviour of the antiferromagnetic nanoribbons remain intact upon oxygen adsorption. However, the local magnetic moment of the edge carbon atom of the ferromagnetic zigzag ribbon is drastically reduced, due to the formation of a spin-paired C-O bond. 相似文献
15.
Feng Peng 《Physica B: Condensed Matter》2011,406(11):2107-2109
A magnetic field not only changes the electronic structure in graphene but also affects the phonon excitations via the electron-phonon interaction and even enables the phonons to generate magnetism. In this paper, we evaluate the magnetic moment of phonons in graphene using a generating-functional technique. The calculation results indicate that the phonon magnetic moment exists only in a weak magnetic field. The step-like change of the magnetic moment with the magnetic field reflects a macroscopic quantum effect. 相似文献
16.
P.E. de BritoH.N. Nazareno 《Physica B: Condensed Matter》2012,407(7):1068-1074
In this work we analyzed the time propagation of wave packets on a sheet of graphene under the action of external magnetic and electric fields in the Hall configuration. The treatment given in this work to the problem of particle propagation in graphene is based on the tight-binding model, not requiring to consider the linear approximation of the band structure around point K in the Brillouin zone. So, our calculation is able to describe the behavior of the particle in more general cases, not only the case of low lying excited states, the so-called massless Dirac electrons. Evaluating the time evolution of the wave function we assume as an initial state a Gaussian with a given velocity. We have considered the symmetric gauge for the vector potential. For specific cases one is able to show a very interesting effect such as the apparition of vortices, i.e., the initial wave is split into components each one of these forming vortices that remain stationaries as time goes. Moreover, for a packet with a wave vector near point K in the Brillouin zone, one is able to show the presence of the effect of zitterbewegung, that is, a trembling motion of the centroid of the wave packet. The inclusion of a dc electric field in the plane of the graphene lattice displaces the vortices in a direction perpendicular to the field. 相似文献
17.
G. Ananthakrishna 《Phase Transitions》2013,86(1-4):589-607
We report the study of the spectral properties of a quasiperiodic superlattice within a tight binding model. Numerical work is carried out using the transfer matrix method. An approximate analytical scheme is used to obtain expressions for the band gaps which explain all the features obtained numerically. Due to the fact that blocks of atoms are repeated quasiperiodically, the gaps are shown to vanish at specific energies. These states have much the same behaviour as the extended states but the amplitude is a quasiperiodic function of the site index. The total number of such extended states are estimated. Since it is known that other states in quasiperiodic systems are critical, these states are expected to exhibit a cross-over behaviour to the critical states as a function of the energy. Multifractal analysis of the quasiperiodic wave function show that it has the same signature as the extended wave function. We briefly comment on the cross-over behaviour. 相似文献
18.
We theoretically investigate the effects of strain-induced pseudomagnetic fields on the transmission probability and the ballistic conductance for Dirac fermion transport in suspended graphene. We show that resonant tunneling through double magnetic barriers can be tuned by strain in the suspended region. The valley-resolved transmission peaks are apparently distinguishable owing to the sharpness of the resonant tunneling. With the specific strain, the resonant tunneling is completely suppressed for Dirac fermions occupying the one valley, but the resonant tunneling exists for the other valley. The valley-filtering effect is expected to be measurable by strain engineering. The proposed system can be used to fabricate a graphene valley filter with the large valley polarization almost 100%. 相似文献
19.
We investigate the thermoelectric properties of one-dimensional (1D) graphene antidot arrays by nonequilibrium Green?s function method. We show that by introducing antidots to the pristine graphene nanoribbon the thermal conductance can be reduced greatly while keeping the power factor still high, thus leading to an enhanced thermoelectric figure of merit (ZT). Our numerical results indicate that ZT values of 1D antidot graphene arrays can be up to unity, which means the 1D graphene antidot arrays may be promising for thermoelectric applications. 相似文献
20.
Yan-Huai Ding Ping ZhangHu-Ming Ren Qin ZhuoZhong-Mei Yang Xu JiangYong Jiang 《Applied Surface Science》2011,258(3):1077-1081
Surface adhesion properties are important to various applications of graphene-based materials. Atomic force microscopy is powerful to study the adhesion properties of samples by measuring the forces on the colloidal sphere tip as it approaches and retracts from the surface. In this paper we have measured the adhesion force between the colloid probe and the surface of graphene (graphene oxide) nanosheet. The results revealed that the adhesion force on graphene and graphene oxide surface were 66.3 and 170.6 nN, respectively. It was found the adhesion force was mainly determined by the water meniscus, which was related to the surface contact angle of samples. 相似文献