首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fusing multiple Bayesian knowledge sources   总被引:1,自引:0,他引:1  
We address the problem of information fusion in uncertain environments. Imagine there are multiple experts building probabilistic models of the same situation and we wish to aggregate the information they provide. There are several problems we may run into by naively merging the information from each. For example, the experts may disagree on the probability of a certain event or they may disagree on the direction of causality between two events (e.g., one thinks A causes B while another thinks B causes A). They may even disagree on the entire structure of dependencies among a set of variables in a probabilistic network. In our proposed solution to this problem, we represent the probabilistic models as Bayesian Knowledge Bases (BKBs) and propose an algorithm called Bayesian knowledge fusion that allows the fusion of multiple BKBs into a single BKB that retains the information from all input sources. This allows for easy aggregation and de-aggregation of information from multiple expert sources and facilitates multi-expert decision making by providing a framework in which all opinions can be preserved and reasoned over.  相似文献   

2.
Approximate inference in Bayesian networks using binary probability trees   总被引:2,自引:0,他引:2  
The present paper introduces a new kind of representation for the potentials in a Bayesian network: Binary Probability Trees. They enable the representation of context-specific independences in more detail than probability trees. This enhanced capability leads to more efficient inference algorithms for some types of Bayesian networks. This paper explains the procedure for building a binary probability tree from a given potential, which is similar to the one employed for building standard probability trees. It also offers a way of pruning a binary tree in order to reduce its size. This allows us to obtain exact or approximate results in inference depending on an input threshold. This paper also provides detailed algorithms for performing the basic operations on potentials (restriction, combination and marginalization) directly to binary trees. Finally, some experiments are described where binary trees are used with the variable elimination algorithm to compare the performance with that obtained for standard probability trees.  相似文献   

3.
《Optimization》2012,61(4):451-461
We have a Bayesian approach for an equilibrium problem in abstract economies of the Yannelis–Prabhakar type. We consider an economy with a countable or uncountable set of agents, with private information defined by subalgebras as per Yannelis [Yannelis, A Bayesian equilibrium existence theorem, Adv. Math. Econ. 4 (2002), pp. 61–72] and the preferences defined by correspondences. We prove an existence equilibrium results which extends the known results, as Yannelis and Prabhakar theorise in [Yannelis and Prabhakar, Existence of maximal elements and equilibrium in linear topological spaces, J. Math. Econom. 12 (1983), pp. 233–245].  相似文献   

4.
Using domain/expert knowledge when learning Bayesian networks from data has been considered a promising idea since the very beginning of the field. However, in most of the previously proposed approaches, human experts do not play an active role in the learning process. Once their knowledge is elicited, they do not participate any more. The interactive approach for integrating domain/expert knowledge we propose in this work aims to be more efficient and effective. In contrast to previous approaches, our method performs an active interaction with the expert in order to guide the search based learning process. This method relies on identifying the edges of the graph structure which are more unreliable considering the information present in the learning data. Another contribution of our approach is the integration of domain/expert knowledge at different stages of the learning process of a Bayesian network: while learning the skeleton and when directing the edges of the directed acyclic graph structure.  相似文献   

5.
韩明 《数学季刊》2001,16(1):65-70
对无失效数据的研究 ,是近些年来遇到的一个新问题 ,在实际问题中迫切需要解决 ,这项工作具有理论和实际应用价值 .本文对无失效数据 (ti,ni) ,在时刻ti 的失效概率pi=p{T 相似文献   

6.
Having the ability to work with complex models can be highly beneficial. However, complex models often have intractable likelihoods, so methods that involve evaluation of the likelihood function are infeasible. In these situations, the benefits of working with likelihood-free methods become apparent. Likelihood-free methods, such as parametric Bayesian indirect likelihood that uses the likelihood of an alternative parametric auxiliary model, have been explored throughout the literature as a viable alternative when the model of interest is complex. One of these methods is called the synthetic likelihood (SL), which uses a multivariate normal approximation of the distribution of a set of summary statistics. This article explores the accuracy and computational efficiency of the Bayesian version of the synthetic likelihood (BSL) approach in comparison to a competitor known as approximate Bayesian computation (ABC) and its sensitivity to its tuning parameters and assumptions. We relate BSL to pseudo-marginal methods and propose to use an alternative SL that uses an unbiased estimator of the SL, when the summary statistics have a multivariate normal distribution. Several applications of varying complexity are considered to illustrate the findings of this article. Supplemental materials are available online. Computer code for implementing the methods on all examples is available at https://github.com/cdrovandi/Bayesian-Synthetic-Likelihood.  相似文献   

7.
指数分布参数多层Bayes和E Bayes估计的性质   总被引:1,自引:0,他引:1  
本文讨论无失效数据下指数分布参数多层Bayes估计和E Bayes估计的性质,在超参数分别取两种不同的先验分布下,证明参数的多层Bayes估计和E Bayes估计渐近相等,且多层Bayes估计值小于E Bayes估计值.  相似文献   

8.
二项分布参数多层Bayes和E Bayes估计的性质   总被引:2,自引:0,他引:2  
讨论无失效数据下二项分布参数E Bayes估计和多层Bayes估计的性质,证明二项参数的多层Bayes估计和E Bayes估计渐近相等,且E Bayes估计值小于多层Bayes估计值.  相似文献   

9.
Customer segmentation is one of the most important purposes of customer base analysis for telecommunication companies. Because companies accumulate very large amounts of data on customer behavior, segmentation is typically achieved by profiling and clustering traffic behavior jointly with demographic data and contracts characteristics. Unfortunately, most algorithms and models used for segmentation do not take into account the longitudinal characteristics of data. In particular, in telecommunication traffic analysis, the importance of decreasing patterns of traffic in customers' lives is well known, and it is relevant to aggregate all clients with such a pattern, while other unknown clusters may be of interest for the marketing manager. Our approach to address this problem is based on specifying the distribution of functions as a mixture of a parametric hierarchical model describing the decreasing pattern segment and a nonparametric contamination that allows unanticipated curve shapes in subjects' traffic. The parametric component is chosen based on prior knowledge, while the contamination is characterized as a functional Dirichlet process. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Modelling loss severity from rare operational risk events with potentially catastrophic consequences has proved a difficult task for practitioners in the finance industry. Efforts to develop loss severity models that comply with the BASEL II Capital Accord have resulted in two principal model directions where one is based on scenario generated data and the other on scaling of pooled external data. However, lack of relevant historical data and difficulties in constructing relevant scenarios frequently raise questions regarding the credibility of the resulting loss predictions. In this paper we suggest a knowledge based approach for establishing severity distributions based on loss determinants and their causal influence. Loss determinants are key elements affecting the actual size of potential losses, e.g. market volatility, exposure and equity capital. The loss severity distribution is conditional on the state of the identified loss determinants, thus linking loss severity to underlying causal drivers. We suggest Bayesian Networks as a powerful framework for quantitative analysis of the causal mechanisms determining loss severity. Leaning on available data and expert knowledge, the approach presented in this paper provides improved credibility of the loss predictions without being dependent on extensive data volumes.  相似文献   

11.
参数的E Bayes估计法及其应用   总被引:6,自引:0,他引:6  
提出了参数的一种估计方法—— E Bayes估计法 ,对寿命服从指数分布的产品 ,在失效率的先验分布为 Gamma分布时 ,给出了失效率的 E Bayes估计和多层 Bayes估计 ,并在此基础上给出了失效率和可靠度的 E Bayes估计的性质 .结合实际问题进行了计算 ,结果表明提出的 E Bayes估计法可行且便于应用 .  相似文献   

12.
Temporal Nodes Bayesian Networks (TNBNs) are an alternative to Dynamic Bayesian Networks for temporal reasoning with much simpler and efficient models in some domains. TNBNs are composed of temporal nodes, temporal intervals, and probabilistic dependencies. However, methods for learning this type of models from data have not yet been developed. In this paper, we propose a learning algorithm to obtain the structure and temporal intervals for TNBNs from data. The method consists of three phases: (i) obtain an initial approximation of the intervals, (ii) obtain a structure using a standard algorithm and (iii) refine the intervals for each temporal node based on a clustering algorithm. We evaluated the method with synthetic data from three different TNBNs of different sizes. Our method obtains the best score using a combined measure of interval quality and prediction accuracy, and a competitive structural quality with lower running times, compared to other related algorithms. We also present a real world application of the algorithm with data obtained from a combined cycle power plant in order to diagnose temporal faults.  相似文献   

13.
Researchers have long struggled to identify causal effects in nonexperimental settings. Many recently proposed strategies assume ignorability of the treatment assignment mechanism and require fitting two models—one for the assignment mechanism and one for the response surface. This article proposes a strategy that instead focuses on very flexibly modeling just the response surface using a Bayesian nonparametric modeling procedure, Bayesian Additive Regression Trees (BART). BART has several advantages: it is far simpler to use than many recent competitors, requires less guesswork in model fitting, handles a large number of predictors, yields coherent uncertainty intervals, and fluidly handles continuous treatment variables and missing data for the outcome variable. BART also naturally identifies heterogeneous treatment effects. BART produces more accurate estimates of average treatment effects compared to propensity score matching, propensity-weighted estimators, and regression adjustment in the nonlinear simulation situations examined. Further, it is highly competitive in linear settings with the “correct” model, linear regression. Supplemental materials including code and data to replicate simulations and examples from the article as well as methods for population inference are available online.  相似文献   

14.
The search for a useful explanatory model based on a Bayesian Network (BN) now has a long and successful history. However, when the dependence structure between the variables of the problem is asymmetric then this cannot be captured by the BN. The Chain Event Graph (CEG) provides a richer class of models which incorporates these types of dependence structures as well as retaining the property that conclusions can be easily read back to the client. We demonstrate on a real health study how the CEG leads us to promising higher scoring models and further enables us to make more refined conclusions than can be made from the BN. Further we show how these graphs can express causal hypotheses about possible interventions that could be enforced.  相似文献   

15.
In this paper the problem of the existence of approximate equilibria in mixed strategies is central. Sufficient conditions are given under which approximate equilibria exist for non-finite Bayesian games. Further one possible approach is suggested to the problem of the existence of approximate equilibria for the class of multicriteria Bayesian games.  相似文献   

16.
杨静  陈冬  程小红 《大学数学》2011,27(2):166-169
介绍了贝叶斯公式的一些应用实例及分析,以使在教学中能帮助学生更深入地理解该公式.  相似文献   

17.
Building on Dryden et al. (2021), this note presents the Bayesian estimation of a regression model for size-and-shape response variables with Gaussian landmarks. Our proposal fits into the framework of Bayesian latent variable models and, potentially, allows for a highly flexible modelling framework.  相似文献   

18.
One of the strengths of rough set theory is the fact that an unknown target concept can be approximately characterized by existing knowledge structures in a knowledge base. Knowledge structures in knowledge bases have two categories: complete and incomplete. In this paper, through uniformly expressing these two kinds of knowledge structures, we first address four operators on a knowledge base, which are adequate for generating new knowledge structures through using known knowledge structures. Then, an axiom definition of knowledge granulation in knowledge bases is presented, under which some existing knowledge granulations become its special forms. Finally, we introduce the concept of a knowledge distance for calculating the difference between two knowledge structures in the same knowledge base. Noting that the knowledge distance satisfies the three properties of a distance space on all knowledge structures induced by a given universe. These results will be very helpful for knowledge discovery from knowledge bases and significant for establishing a framework of granular computing in knowledge bases.  相似文献   

19.
In health care organizations (HCOs) adverse events may provoke dangerous consequences on patients, such as death, a longer hospital stay, and morbidity. As a consequence, HCO’s department needs to manage legal issues and economic reimbursements. Governances and physicians are interested in operational (OR) and clinical risk (CR) assessment, mainly for forecasting and managing losses and for a correct decision making. Currently, scientific researches, which are objected to a quantification of CR and OR in HCO, are scarce; absence of regulatory constraints and limited awareness of benefits due to risk management do not provide incentives to elaborate on how risks can be quantified. This paper is aimed at proposing Bayesian methods to manage operational and clinical adverse events in health care. Bayesian Networks (BNs) are useful for assessing risks given end stage renal disease (ESRD) as a context of application; some prior probability distributions are advised for representing knowledge before experimental results and Bayesian utility functions for making the optimal decision. The method is described as from the theoretical as from the empirical point of view, thanks to the health care and haemodialysis department, for this application. The ultimate goal is to introduce a methodology useful for managing operational and clinical risk for haemodialysis patients and departments.   相似文献   

20.
A sequential Bayesian method for finding the maximum of a function based on myopically minimizing the expected dispersion of conditional probabilities is described. It is shown by example that an algorithm that generates a dense set of observations need not converge to the correct answer for some priors on continuous functions on the unit interval. For the Brownian motion prior the myopic algorithm is consistent; for any continuous function, the conditional probabilities converge weakly to a point mass at the true maximum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号