共查询到9条相似文献,搜索用时 0 毫秒
1.
The decay of surface charges deposited on the dielectric material by the partial discharge (PD) activity has a great impact on the repetition of partial discharges. In this work, the effect of dielectric placed on the surface of ground electrode in a needle-plane configuration on the discharge activity was investigated, with the application of a periodic negative step voltage. The charge decay mechanisms on a corona charged dielectric surface were investigated based on a comparison between experiments and a FEM-based numerical model. The comparison indicates that the surface charges may decay due to different mechanisms depending on the applied stress. 相似文献
2.
介质材料表面电荷的积累和衰减行为是制约众多高压直流电力设备研制的关键因素. 薄片状介质试样的表面电荷密度与表面电位近似呈线性关系, 因此常通过表面电位衰减行为研究表面电荷的衰减特性. 基于电晕充电、表面电荷沉积和脱陷、介质体内单极性电荷输运等3个物理过程, 建立表面电位动态响应的物理模型. 通过计算环氧树脂的表面电位衰减行为, 得到栅极电压、相对介电常数和体电导率等对其表面电位衰减特性的影响. 栅极电压越高, 表面电位的衰减速度越快; 环氧树脂材料参数典型值(相对介电常数3.93, 体电导率10-14 S· m-1)下, 归一化表面电位的衰减速率随时间变化的曲线可拟合为分段幂函数, 其中, 分段幂函数的特征时间、指数系数与栅极电压分别呈幂函数和线性变化关系. 相对介电常数越大, 表面电位的衰减速度越慢; 环氧树脂相对介电常数典型范围(3–4)内, 表面电位衰减时间常数由1720 s增大到2540 s, 两者呈线性关系. 体电导率越大, 表面电位的衰减速度越快; 环氧树脂体电导率典型范围(10-15–10-13 S· m-1)内, 表面电位衰减时间常数由24760 s 减小到260 s, 两者呈幂函数变化关系. 相似文献
3.
Electrostatic charging of fibrous materials are of concern for the performance of electret filters and comfort issues of textiles. However there is a huge controversy in the characterization techniques of ion beam irradiated or corona charged fibrous materials. In this study we reported a reliable, simple surface potential measurement method. Large variations in potential measurements were found to be mostly due to structural nonuniformity such as packing density, thickness and fiber–fiber proximity. Test samples were prepared after optimizing those parameters and we were able to reduce coefficient of variation below 15%. Methods that were developed so far were also reviewed. 相似文献
4.
Electrostatic charging of particles of identical composition, but different sizes, is a poorly understood phenomenon that may be of importance in dust storms, generation of lightning, numerous technological applications involving solid particulates, and in the agglomeration of lunar dust and inter-stellar dust clouds. We show that under optical excitation, the relative magnitude of surface to volume de-excitation gives size-dependent electron and hole concentrations. The consequent differences in chemical potentials can lead to charge transfer between particles of different size. The direction of charge transfer, from large to small or vice versa, depends critically on the properties of the materials. 相似文献
5.
This study investigates the mechanism of electron redistribution and multiplication for a SiO2 sample with a buried structure in scanning electron microscopy by numerical simulation. The simulation involved electron scattering and internal charge transport in the sample, the tracking of emitted secondary electrons (SEs), and the generation of tertiary electrons (TEs) produced by returned SEs due to charging of the sample. The results show that a buried grounded structure causes a non-uniform distribution of surface potential, and an electric field above the surface. As a result, although the number of escaped SEs above the margin of the buried structure decreases, the number of generated TEs increases more, leading to a final current of electrons that include escaped SEs and increased TEs. This multiplication of SEs might make a crucial contribution to the abnormal negative-charging contrast in SEM. During the electron beam irradiation, the variation in the number of total escaped electrons presents an obvious increase after an initial slight decrease, which corresponded to the transient characteristics of gray levels in SEM images from dark to abnormally bright. 相似文献
6.
Layers prepared by pulsed TEA CO2 pulsed laser ablation (PLA) of SiO and SiO2 targets in helium were exposed to hydrogen and deuterium atmosphere up to several kPa. The deposited layers were investigated by FTIR, EPR and XP spectroscopy. Among various Si species silyl radical Si(·)H (Si(·)D) at 2166 (1568) cm−1—H(I) center—and silyl hydroperoxide SiOOH (SiOOD) at 3587 (2648) cm−1 were identified in FTIR spectra. Chemical pathways for production of these species are discussed. Experimental results are supported by quantum chemical calculations. 相似文献
7.
We have found that the degeneracy pressure of electrons (DPE) inside Pb islands grown on a silicon substrate plays a crucial role in stabilizing the islands. In most cases, at a metal-semiconductor interface charge spilling takes place due to the difference of Fermi energies between the two materials, which makes DPE decrease along with the energy of the system. Based on this new effect, calculations of energy as a function of height are carried out for Pb islands grown on Si(1 1 1)-() and -(7 × 7) phases, which have most stable heights of 5 and 7 monolayers (ML), respectively. Our results explain why these most stable heights are observed. Using this new effect supplemented with experimental data, all the preferred heights of the Pb islands on Si(1 1 1)-(7 × 7) can be explained too. 相似文献
8.
Mark E. Greene 《Surface science》2004,559(1):16-28
The ultra-high vacuum scanning tunneling microscope (UHV-STM) was used to investigate the addition of the 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) radical to the Si(1 0 0) surface. Room temperature studies performed on clean Si(1 0 0)-2 × 1 confirm the proposed binding of the unpaired valence electron associated with the singly occupied molecular orbital (SOMO) of the molecule with a Si dangling bond. A strong bias dependence in the topography of isolated molecules was observed in the range of −2.0 to +2.5 V. Semiempirical and density functional calculations of TEMPO bound to a three-dimer silicon cluster model yield occupied state density isosurfaces below the highest occupied (HOMO) and unoccupied state densities isosurfaces above the lowest unoccupied molecular orbital (LUMO) which trend in qualitative agreement with the bias dependent STM topography. Furthermore, the placement of TEMPO molecules on dangling bonds was controlled with atomic precision on the monohydride Si(1 0 0) surface via electron stimulated desorption of H, demonstrating the compatibility of nitroxyl free radical binding chemistries with nanopatterning techniques such as feedback controlled lithography. 相似文献
9.
The 3D characteristics of post‐traumatic syringomyelia in a rat model: a propagation‐based synchrotron radiation microtomography study 下载免费PDF全文
Shenghui Liao Shuangfei Ni Yong Cao Xianzhen Yin Tianding Wu Hongbin Lu Jianzhong Hu Hao Wu Ye Lang 《Journal of synchrotron radiation》2017,24(6):1218-1225
Many published literature sources have described the histopathological characteristics of post‐traumatic syringomyelia (PTS). However, three‐dimensional (3D) visualization studies of PTS have been limited due to the lack of reliable 3D imaging techniques. In this study, the imaging efficiency of propagation‐based synchrotron radiation microtomography (PB‐SRµCT) was determined to detect the 3D morphology of the cavity and surrounding microvasculature network in a rat model of PTS. The rat model of PTS was established using the infinite horizon impactor to produce spinal cord injury (SCI), followed by a subarachnoid injection of kaolin to produce arachnoiditis. PB‐SRµCT imaging and histological examination, as well as fluorescence staining, were conducted on the animals at the tenth week after SCI. The 3D morphology of the cystic cavity was vividly visualized using PB‐SRµCT imaging. The quantitative parameters analyzed by PB‐SRµCT, including the lesion and spared spinal cord tissue area, the minimum and maximum diameters in the cystic cavity, and cavity volume, were largely consistent with the results of the histological assessment. Moreover, the 3D morphology of the cavity and surrounding angioarchitecture could be simultaneously detected on the PB‐SRµCT images. This study demonstrated that high‐resolution PB‐SRµCT could be used for the 3D visualization of trauma‐induced spinal cord cavities and provides valuable quantitative data for cavity characterization. PB‐SRµCT could be used as a reliable imaging technique and offers a novel platform for tracking cavity formation and morphological changes in an experimental animal model of PTS. 相似文献