共查询到20条相似文献,搜索用时 0 毫秒
1.
In this work, the results of electrohydrodynamic (EHD) secondary flow and particle collection efficiency measurements in a spike-plate type electrostatic precipitator (ESP) are presented. The EHD secondary flow was measured using 2- and 3-dimensional particle image velocimetry (PIV) method under the negative DC voltage. The PIV measurements were carried out in several cross-sectional planes along and across the ESP duct. The results show a complex and turbulent flow structure in the ESP. The EHD secondary flow significantly depends on applied voltage and measuring cross-sectional plane position in respect to the spike tip. The partial collection efficiency of the ESP was measured for negative and positive DC voltage. The particle concentration with and without discharge was measured at the ESP exit using an optical aerosol spectrometer. 相似文献
2.
Results of 2- and 3-dimensional Particle Image Velocimetry (PIV) measurements of the flow velocity fields in narrow electrostatic precipitators (ESPs) with either a longitudinal or transverse wire electrode are presented in this work. The obtained results confirmed that the particle flow in the ESP have a strongly 3D character mainly due to applied voltage and narrow cross section of the ESP duct. It was found that several vortices were formed along and across the ESP duct. The complex character of the flow in both ESP may considerably affect the particle collection efficiency of the ESP. This issue is under investigation. 相似文献
3.
《Journal of Electrostatics》2006,64(3-4):259-262
In this paper, the results of the particle image velocimetry measurements of the flow velocity fields in an intermediate spacing wire-to-plate type electrostatic precipitator (ESP) with a single positive polarity wire electrode are presented. The observation plane was placed perpendicular to the wire electrode at its half-length. The investigation showed significant influence of the electric field and charge on the flow patterns in the intermediate spacing ESP under an extreme large electrohydrodynamic (EHD) number. The EHD forces cause the formation of strong vortex pairs in the upstream and downstream ESP regions for Ehd/Re2>1. 相似文献
4.
Electrospray was combined with an electrostatic precipitator (ESP) to enhance the collection efficiency of monodisperse nanometer-sized particles. The electrospray of deionized water produced water droplets with sizes ranging from 10 to 300 μm. The combination of the ESP with the electrospray enhanced collection of particles by 21–36% depending on the particle size. The combination of the ESP and the electrospray was also found to reduce the energy consumption of the ESP. 相似文献
5.
6.
7.
A. Bologa H.-R. Paur H. Seifert Th. W?scher K. Woletz 《Journal of Electrostatics》2009,67(2-3):150-153
A novel wet electrostatic precipitator (WESP) is designed for effective control of fine aerosol from humid gases. It operates on the principle of unipolar particle charging in the corona discharge and particle precipitation under the field of their own space charge. The new precipitator is characterized by high gas velocity in the ionizing stage. Tests were carried out for gas with (NH4)2SO4, HCl and (NH4)Cl aerosol at particle number concentration up to 5·107#/cm3 and mass concentration 10–1000 mg/Nm3. For test conditions one-field WESP ensures mass collection efficiency 90–97% and two-field electrostatic precipitator up to 99%. 相似文献
8.
Audrey Villot Yves Gonthier Evelyne Gonze Alain Bernis 《Journal of Electrostatics》2013,71(4):815-822
The aim of this paper is to highlight the number evolution of free electrons in the drift region of a wire-cylinder electrostatic precipitator in negative voltage depends on the experimental parameters, more particularly of gas composition. A numerical model of the negative DC corona discharge developed by Chen et al. was used and modified to investigate the negative discharge corona for different gases. A parametric study was conducted to examine the effect on the electron distribution of operating conditions. The results showed the electron concentration increases with temperature, decreases when the pressure increases, and is closely related to gas composition. 相似文献
9.
A three-dimensional numerical model has been created to evaluate the electrical and electrohydrodynamic characteristics of a single spiked wire-plate electrostatic precipitator. The hybrid Finite Element – Flux Corrected Transport numerical technique is used for solving the Poisson and current continuity equations to estimate the electric potential and ion charge density distributions in the precipitation channel. The fully three-dimensional turbulent airflow distribution is calculated using the commercial FLUENT software assuming a standard k–? turbulence model. A non-uniform corona discharge is assumed, as it is produced along the electrode in the form of a flat tape with some number of spikes. The EHD secondary flow pattern and its interaction with the main airflow in different planes along the precipitation channel are examined for different voltages applied to the corona spiked electrode. The numerical results are compared with experimental data published in the literature. 相似文献
10.
This paper analyses corona discharge in ambient air with laboratory-scaled wire-to-plate electrostatic precipitator (WPESP). The electric field is behind the electro hydrodynamic (EHD) flow in air. Its measurements provide complementary results for the corona discharge study because the classical theory based on the current and voltage data is unsatisfactory. Taking into account the dynamic air flow velocity is perpendicular to the active wires, measurement method of the positive and negative DC corona current density and electric field, has been introduced. It has been shown also that the dynamic air flow velocity modifies the current density and the electric field distributions on the planes surfaces of the WPESP. 相似文献
11.
Electrostatic precipitators (ESPs) are commonly the most used filtration technology at industrial environments considering that ESPs allow to have a high dedusting efficiency. ESP insulators are key components in a precipitator inasmuch as if they do not work properly, the efficiency decreases quickly, and even having an inadequate insulation can end up in a serious accident. Therefore, there are several recommendations given about the adequate material for each insulator type and also about how to maintain an ESP insulator in good working conditions. 相似文献
12.
《Journal of Electrostatics》2007,65(12):728-734
In this work, results of three-dimensional (3D) Particle Image Velocimetry (PIV) measurements of the electrohydrodynamic (EHD) flow velocity fields in a narrow electrostatic precipitator (ESP) with a longitudinal-to-flow placed wire electrode are presented. The ESP was a narrow transparent acrylic box (90 mm×30 mm×30 mm). The electrode set consisted of a single wire discharge electrode and two plane collecting electrodes. Either two smooth stainless-steel plates or two stainless-steel plane meshes with nylon flocks were used as the collecting electrodes. The 3D PIV measurements were carried out in two parallel planes, placed longitudinally to the flow duct. The positive DC voltage of up to 9.5 kV was applied to the wire electrode through a 10 MΩ resistor. The collecting electrodes were grounded. The measurements were carried out at a primary flow velocity of 0.5 m/s. Obtained results show that the flow patterns for the smooth-plate electrodes and for the flocking plane electrodes are similar in the bulk of the flow. However, the flow velocities near the flocking plane electrodes are much lower than those near the smooth-plate electrodes. This is a beneficial phenomenon, because the lower the flow near the collecting electrodes, the lower re-entrainment of the particles deposited on the collecting electrodes occurs. 相似文献
13.
An analysis of the electrostatic gas cleaning fundamental phenomenon shows an essential influence of discharge electrode construction on the gas cleaning process efficiency.In the physical model tests there were used rigid discharge electrodes with corona emitting elements of various geometries. Different constructions of discharge electrode were tested in the aspect of discharge current uniform distribution on collecting electrode surfaces. Measurements of discharge current distribution has been carried out for discharge electrodes with different spike shapes and in different electric field geometry. The research aim was to determine the optimal discharge electrode construction ensuring high collection efficiency of fine particles. Collection efficiency measurements of selected fly ash samples (from coal fired boilers) were carried out on a laboratory testing bench in a horizontal electrostatic precipitator model. 相似文献
14.
In this paper, a new electrostatic precipitator (ESP) with asymmetrical wire-to-cylinder configuration is investigated experimentally and numerically. The main objective is to evaluate the collection efficiency of high resistivity particles.The electrical measurements show that the corona discharge behavior is similar to that obtained in symmetrical wire-to-cylinder configuration. Results show that the collection efficiency can reach 95% in the case of negative corona discharge.In order to understand the particle trajectories inside the ESP, the experimental results are compared with numerical simulation by using a coupled model. Numerical results indicate that particles can be collected on the collecting electrode backside. 相似文献
15.
Shoji Koide Akira Nakagawa Katsuhiko Omoe Koichi Takaki Toshitaka Uchino 《Journal of Electrostatics》2013,71(4):734-738
We constructed a single-stage, laboratory-scale electrostatic precipitator (ESP) and evaluated its physical and microbial collection efficacies. Ground rice husk was examined as a representative model of airborne particles carrying microorganisms (bacteria, molds and yeasts). Physical and microbial collection efficacies were evaluated at different voltages applied to the negative discharge electrode without ozone generation. The best collection efficiencies were observed at an applied voltage of ?6.0 kV, resulting in collection efficiencies of over 90% for the physical sample and 99.95% for bacteria. No molds or yeasts in the ground rice husk passed through the ESP operating at ?6.0 kV applied voltage. 相似文献
16.
Although improving electrostatic precipitator (ESP) collection of fine particles (micron and submicron sizes) remains of interest,
it is not yet clear whether the turbulent flow patterns caused by the presence of electric field and charge in ESPs advance
or deteriorate fine particle precipitation process. In this paper, results of the laser flow visualization and Particle Image
Velocimetry (PIV) measurements of the particle flow velocity fields in a wire-to-plate type ESP model with seven wire electrodes
are presented. Both experiments were carried out for negative and positive polarity of the wire electrodes. The laser flow
visualization and PIV measurements clearly confirmed formation of the secondary flow (velocity of several tens of cm/s) in
the ESP model, which interacts with the primary flow. The particle flow pattern changes caused by the strong interaction between
the primary and secondary flows are more pronounced for higher operating voltages (higher electrohydrodynamic numbernehd) and lower primary flow velocities (lower Reynolds number Re). The particle flow patterns for the positive voltage polarity
of the wire electrodes are more stable and regular than those for the negative voltage polarity due to the nonuniformity of
the negative corona along the wire electrodes (tufts). 相似文献
17.
《Journal of Electrostatics》2006,64(7-9):498-505
In this work, results of two- and three-dimensional particle image velocimetry (PIV) measurements of the flow velocity fields in a wide spacing spike–plate electrostatic precipitator (ESP) under positive polarity are presented. A DC voltage of positive polarity (up to 28 kV) was applied to the spike electrode. The average gas flow velocity was 0.6 m/s. The PIV measurements were carried out in four planes perpendicular to the plate electrodes. Three parallel planes passed along the ESP while one plane passed across the ESP duct. The results show that electrohydrodynamic (EHD) secondary flow with relatively strong vortices exist in the ESP. The EHD secondary flow pattern depends on applied voltage and measuring plane position in respect to the spike tip. The strongest vortices occur in the plane passing through the tip of the upstream-directed spike. These relatively strong EHD vortices may hinder collection of the particles in the diameter range of 0.1–1 μm in the wide electrode spacing spike–plate ESPs. 相似文献
18.
Lab-scale, two-stage electrostatic precipitation system comprising of precharging stage, in which PM2.5 particles are electrically charged, and collection stage, in which the charged particles are removed from the flowing gas by electric field, was investigated in this paper. Two types of electrostatic particle prechargers were compared with respect to the collection efficiency of the system: (1) co-flow precharger, in which ionic current was generated co-currently with the gas conveying the particles, and (2) counter-flow precharger, in which ionic current was generated oppositely to the flowing gas. In each case, the electrodes of precharger were supplied with DC or AC high-voltage in order to compare the effect of discharge mode on the collection efficiency of two-stage electrostatic precipitator. The collection stage was formed by two parallel-plate electrodes connected to DC high voltage source. Plate electrodes without discharge points (spikes) are corona-free electrodes, which prevent the collection stage from electrical discharges, and reduce the probability of back discharge ignition. The back discharge decreases collection efficiency of conventional electrostatic precipitators.It was concluded that the co-flow electrode configuration of the precharger, supplied with DC high voltage, has the highest total number collection efficiency for PM2.5 particles, higher than 95% and the mass collection efficiency larger than 99%. The counter-flow precharger provided only about 90% number collection efficiency of two-stage electrostatic precipitator. It was also shown that by AC electrode excitation, the collection efficiency of the system is lower than for DC supply. The two-stage electrostatic precipitators allowed obtaining higher fractional collection efficiency for PM2.5 particles than other conventional systems and can be recommended as highly effective devices for gas cleaning in power plants or cement industry. 相似文献
19.
Charging and absorption characteristics of small particulates under alternative and electrostatic voltages in an electrostatic precipitator 下载免费PDF全文
The charge quantity of small particulates such as PM2.5 plays a key role in the collection efficiency of an electrostatic precipitator(ESP). Under a single electrostatic voltage, it is difficult to charge and absorb small particulates. A new method of superimposing an alternative voltage on the electrostatic voltage is provided in this paper. Characteristics of small particulates are analyzed under alternative and electrostatic voltages. It is demonstrated that an alternative voltage can significantly improve the collection efficiency in three aspects: preventing anti-corona, increasing the charge quantity of small particulates, and increasing the median particulate size by electric agglomeration. In addition, practical usage with the superposition of alternative voltage is provided, and the results are in agreement with the theoretical analysis. 相似文献