首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
The dynamic system of anisotropic elasticity from three second order partial differential equations is written in the form of the time-dependent first order symmetric hyperbolic system with respect to displacement velocity and stress components. A new method of deriving the time-dependent fundamental solution of the obtained system is suggested in this paper. This method consists of the following. The Fourier transform image of the fundamental solution with respect to a space variable is presented as a power series expansion relative to the Fourier parameters. Then explicit formulae for the coefficients of these power series are derived successively. Using these formulae the computer calculation of fundamental solution components (displacement velocity and stress components arising from pulse point forces) has been made for general anisotropic media (orthorhombic and monoclinic) and the simulation of elastic waves has been obtained. These computational examples confirm the robustness of the suggested method.  相似文献   

2.
The time-dependent differential equations of elasticity for 2D quasicrystals with general structure of anisotropy (dodecagonal, octagonal, decagonal, pentagonal, hexagonal, triclinic) are considered in the paper. These equations are written in the form of a vector partial differential equation of the second order with symmetric matrix coefficients. The fundamental solution (matrix) is defined for this vector partial differential equation. A new method of the numerical computation of values of the fundamental solution is suggested. This method consists of the following: the Fourier transform with respect to space variables is applied to vector equation for the fundamental solution. The obtained vector ordinary differential equation has matrix coefficients depending on Fourier parameters. Using the matrix computations a solution of the vector ordinary differential equation is numerically computed. Finally, applying the inverse Fourier transform numerically we find the values of the fundamental solution. Computational examples confirm the robustness of the suggested method for 2D quasicrystals with arbitrary type of anisotropy.  相似文献   

3.
In this paper we construct a dynamical process (in general, multivalued) generated by the set of solutions of an optimal control problem for the three-dimensional Navier-Stokes system. We prove the existence of a pullback attractor for such multivalued process. Also, we establish the existence of a uniform global attractor containing the pullback attractor. Moreover, under the unproved assumption that strong globally defined solutions of the three-dimensional Navier-Stokes system exist, which guaranties the existence of a global attractor for the corresponding multivalued semiflow, we show that the pullback attractor of the process coincides with the global attractor of the semiflow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号