首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Bayesian networks (BNs) have attained widespread use in data analysis and decision making. Well-studied topics include efficient inference, evidence propagation, parameter learning from data for complete and incomplete data scenarios, expert elicitation for calibrating BN probabilities, and structure learning. It is common for the researcher to assume the structure of the BN or to glean the structure from expert elicitation or domain knowledge. In this scenario, the model may be calibrated through learning the parameters from relevant data. There is a lack of work on model diagnostics for fitted BNs; this is the contribution of this article. We key on the definition of (conditional) independence to develop a graphical diagnostic that indicates whether the conditional independence assumptions imposed, when one assumes the structure of the BN, are supported by the data. We develop the approach theoretically and describe a Monte Carlo method to generate uncertainty measures for the consistency of the data with conditional independence assumptions under the model structure. We describe how this theoretical information and the data are presented in a graphical diagnostic tool. We demonstrate the approach through data simulated from BNs under different conditional independence assumptions. We also apply the diagnostic to a real-world dataset. The results presented in this article show that this approach is most feasible for smaller BNs—this is not peculiar to the proposed diagnostic graphic, but rather is related to the general difficulty of combining large BNs with data in any manner (such as through parameter estimation). It is the authors’ hope that this article helps highlight the need for more research into BN model diagnostics. This article has supplementary materials online.  相似文献   

2.
Bayesian networks are graphical models that represent the joint distribution of a set of variables using directed acyclic graphs. The graph can be manually built by domain experts according to their knowledge. However, when the dependence structure is unknown (or partially known) the network has to be estimated from data by using suitable learning algorithms. In this paper, we deal with a constraint-based method to perform Bayesian networks structural learning in the presence of ordinal variables. We propose an alternative version of the PC algorithm, which is one of the most known procedures, with the aim to infer the network by accounting for additional information inherent to ordinal data. The proposal is based on a nonparametric test, appropriate for ordinal variables. A comparative study shows that, in some situations, the proposal discussed here is a slightly more efficient solution than the PC algorithm.  相似文献   

3.
Bayesian networks model conditional dependencies among the domain variables, and provide a way to deduce their interrelationships as well as a method for the classification of new instances. One of the most challenging problems in using Bayesian networks, in the absence of a domain expert who can dictate the model, is inducing the structure of the network from a large, multivariate data set. We propose a new methodology for the design of the structure of a Bayesian network based on concepts of graph theory and nonlinear integer optimization techniques.  相似文献   

4.
An algebraic Bayesian network (ABN) is a probabilistic-logic graphical model of bases of knowledge patterns with uncertainty. A primary structure of an ABN is a set of knowledge patterns, that are ideals of conjunctions of positive literals except the empty conjunction endowed with scalar or interval probability estimates. A secondary ABN structure is represented by a graph constructed over the primary structure, which is called a join graph. From the point of view of learning of a global ABN structure, of interest are join graphs with the minimum number of edges and irreducible join graphs. A theorem on the coincidence of the sets of minimal and irreducible join graphs over the same primary structure is proved. A greedy algorithm constructing an arbitrary minimal join graph from a given primary structure is described. A theorem expressing the number of edges in a minimal join graph as the sum of the ranks of the incidence matrices of strong restrictions of a maximal join graph minus the number of significant weights is stated and proved. A generalized graph of maximal knowledge patterns (GGMKP) is a graph with the same vertex set as the join graph which is not subject to any constraints concerning the possibility of joining two vertices by an edge. It is proved that the pair consisting of the edge set of a maximal GGMKP and the set of all subsets of this graph such that the subtraction of any such subset from the maximal GGMKP yields an edge of the join graph on the same vertex set is a matroid.  相似文献   

5.
One of the hardest challenges in building a realistic Bayesian Network (BN) model is to construct the node probability tables (NPTs). Even with a fixed predefined model structure and very large amounts of relevant data, machine learning methods do not consistently achieve great accuracy compared to the ground truth when learning the NPT entries (parameters). Hence, it is widely believed that incorporating expert judgments can improve the learning process. We present a multinomial parameter learning method, which can easily incorporate both expert judgments and data during the parameter learning process. This method uses an auxiliary BN model to learn the parameters of a given BN. The auxiliary BN contains continuous variables and the parameter estimation amounts to updating these variables using an iterative discretization technique. The expert judgments are provided in the form of constraints on parameters divided into two categories: linear inequality constraints and approximate equality constraints. The method is evaluated with experiments based on a number of well-known sample BN models (such as Asia, Alarm and Hailfinder) as well as a real-world software defects prediction BN model. Empirically, the new method achieves much greater learning accuracy (compared to both state-of-the-art machine learning techniques and directly competing methods) with much less data. For example, in the software defects BN for a sample size of 20 (which would be considered difficult to collect in practice) when a small number of real expert constraints are provided, our method achieves a level of accuracy in parameter estimation that can only be matched by other methods with much larger sample sizes (320 samples required for the standard machine learning method, and 105 for the directly competing method with constraints).  相似文献   

6.
We propose a new nonparametric approach to represent the linear dependence structure of a spatiotemporal process in terms of latent common factors.Though it is formally similar to the existing reduced rank approximation methods,the fundamental difference is that the low-dimensional structure is completely unknown in our setting,which is learned from the data collected irregularly over space but regularly in time.Furthermore,a graph Laplacian is incorporated in the learning in order to take the advantage of the continuity over space,and a new aggregation method via randomly partitioning space is introduced to improve the efficiency.We do not impose any stationarity conditions over space either,as the learning is facilitated by the stationarity in time.Krigings over space and time are carried out based on the learned low-dimensional structure,which is scalable to the cases when the data are taken over a large number of locations and/or over a long time period.Asymptotic properties of the proposed methods are established.An illustration with both simulated and real data sets is also reported.  相似文献   

7.
In this article, we introduce a novel Bayesian approach for linking multiple social networks in order to discover the same real world person having different accounts across networks. In particular, we develop a latent model that allows us to jointly characterize the network and linkage structures relying on both relational and profile data. In contrast to other existing approaches in the machine learning literature, our Bayesian implementation naturally provides uncertainty quantification via posterior probabilities for the linkage structure itself or any function of it. Our findings clearly suggest that our methodology can produce accurate point estimates of the linkage structure even in the absence of profile information, and also, in an identity resolution setting, our results confirm that including relational data into the matching process improves the linkage accuracy. We illustrate our methodology using real data from popular social networks such as Twitter , Facebook , and YouTube .  相似文献   

8.
9.
Limiting distributions are derived for the sparse connected components that are present when a random graph on n vertices has approximately 1/2n edges. In particular, we show that such a graph consists entirely of trees, unicyclic components, and bicyclic components with probability approaching √2/3 cosh √5/18 ≈ 0.9325 as n→∞. The limiting probability that it is consists of trees, unicyclic components, and at most one another component is approximately 0.9957; the limiting probability that it is planar lies between 0.987 and 0.9998. When a random graph evolves and the number of edges passes 1/2n, its components grow in cyclic complexity according to an interesting Markov process whose asymptotic structure is derived. The probability that there never is more than a single component with more edges than vertices, throughout the veolution, approaches 5 π/18 ≈ 0.8727. A “uniform” model of random graphs, which allows self-loops and multiple edges, is shown to lead to formulas that are substanitially simpler than the analogous formulas for the classical random graphs of Erdõs and Rényi. The notions of “excess” and “deficiency,” which are significant characteristics of the generating function as well as of the graphs themselves, lead to a mathematically attractive structural theory for the uniform model. A general approach to the study of stopping configurations makes it possible to sharpen previously obtained estimates in a uniform manner and often to obtain closed forms for the constants of interest. Empirical results are presented to complement the analysis, indicating the typical behavior when n is near 2oooO. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
The main goal of this paper is to describe a new graphical structure called ‘Bayesian causal maps’ to represent and analyze domain knowledge of experts. A Bayesian causal map is a causal map, i.e., a network-based representation of an expert’s cognition. It is also a Bayesian network, i.e., a graphical representation of an expert’s knowledge based on probability theory. Bayesian causal maps enhance the capabilities of causal maps in many ways. We describe how the textual analysis procedure for constructing causal maps can be modified to construct Bayesian causal maps, and we illustrate it using a causal map of a marketing expert in the context of a product development decision.  相似文献   

11.
From observational data alone, a causal DAG is only identifiable up to Markov equivalence. Interventional data generally improves identifiability; however, the gain of an intervention strongly depends on the intervention target, that is, the intervened variables. We present active learning (that is, optimal experimental design) strategies calculating optimal interventions for two different learning goals. The first one is a greedy approach using single-vertex interventions that maximizes the number of edges that can be oriented after each intervention. The second one yields in polynomial time a minimum set of targets of arbitrary size that guarantees full identifiability. This second approach proves a conjecture of Eberhardt (2008) [1] indicating the number of unbounded intervention targets which is sufficient and in the worst case necessary for full identifiability. In a simulation study, we compare our two active learning approaches to random interventions and an existing approach, and analyze the influence of estimation errors on the overall performance of active learning.  相似文献   

12.
The marginal likelihood of the data computed using Bayesian score metrics is at the core of score+search methods when learning Bayesian networks from data. However, common formulations of those Bayesian score metrics rely on free parameters which are hard to assess. Recent theoretical and experimental works have also shown that the commonly employed BDe score metric is strongly biased by the particular assignments of its free parameter known as the equivalent sample size. This sensitivity means that poor choices of this parameter lead to inferred BN models whose structure and parameters do not properly represent the distribution generating the data even for large sample sizes. In this paper we argue that the problem is that the BDe metric is based on assumptions about the BN model parameters distribution assumed to generate the data which are too strict and do not hold in real settings. To overcome this issue we introduce here an approach that tries to marginalize the meta-parameter locally, aiming to embrace a wider set of assumptions about these parameters. It is shown experimentally that this approach offers a robust performance, as good as that of the standard BDe metric with an optimum selection of its free parameter and, in consequence, this method prevents the choice of wrong settings for this widely applied Bayesian score metric.  相似文献   

13.
Designing systems with human agents is difficult because it often requires models that characterize agents’ responses to changes in the system’s states and inputs. An example of this scenario occurs when designing treatments for obesity. While weight loss interventions through increasing physical activity and modifying diet have found success in reducing individuals’ weight, such programs are difficult to maintain over long periods of time due to lack of patient adherence. A promising approach to increase adherence is through the personalization of treatments to each patient. In this paper, we make a contribution toward treatment personalization by developing a framework for predictive modeling using utility functions that depend upon both time-varying system states and motivational states evolving according to some modeled process corresponding to qualitative social science models of behavior change. Computing the predictive model requires solving a bilevel program, which we reformulate as a mixed-integer linear program (MILP). This reformulation provides the first (to our knowledge) formulation for Bayesian inference that uses empirical histograms as prior distributions. We study the predictive ability of our framework using a data set from a weight loss intervention, and our predictive model is validated by comparison to standard machine learning approaches. We conclude by describing how our predictive model could be used for optimization, unlike standard machine learning approaches that cannot.  相似文献   

14.
We introduce here the concept of Bayesian networks, in compound Poisson model, which provides a graphical modeling framework that encodes the joint probability distribution for a set of random variables within a directed acyclic graph. We suggest an approach proposal which offers a new mixed implicit estimator. We show that the implicit approach applied in compound Poisson model is very attractive for its ability to understand data and does not require any prior information. A comparative study between learned estimates given by implicit and by standard Bayesian approaches is established. Under some conditions and based on minimal squared error calculations, we show that the mixed implicit estimator is better than the standard Bayesian and the maximum likelihood estimators. We illustrate our approach by considering a simulation study in the context of mobile communication networks.  相似文献   

15.
For a chordal graph G=(V,E), we study the problem of whether a new vertex uV and a given set of edges between u and vertices in V can be added to G so that the resulting graph remains chordal. We show how to resolve this efficiently, and at the same time, if the answer is no, specify a maximal subset of the proposed edges that can be added along with u, or conversely, a minimal set of extra edges that can be added in addition to the given set, so that the resulting graph is chordal. In order to do this, we give a new characterization of chordal graphs and, for each potential new edge uv, a characterization of the set of edges incident to u that also must be added to G along with uv. We propose a data structure that can compute and add each such set in O(n) time. Based on these results, we present an algorithm that computes both a minimal triangulation and a maximal chordal subgraph of an arbitrary input graph in O(nm) time, using a totally new vertex incremental approach. In contrast to previous algorithms, our process is on-line in that each new vertex is added without reconsidering any choice made at previous steps, and without requiring any knowledge of the vertices that might be added subsequently.  相似文献   

16.
Model Management Systems (MMS) have become increasingly important in handling complicated problems in Decision Support Systems (DSS). The primary goal of MMS is to facilitate the development and the utilization of quantitative models to improve decision performance. Much current research focuses on model construction. Where early research used deductive reasoning approaches to construct new models, more recent efforts use inductive reasoning mechanisms. Both approaches have their drawbacks. Deductive reasoning methods require a strong domain theory (which may not exist or may be too complex to apply) and ignore previous solving experience. Inductive reasoning methods can take advantage of precedents or prototypical cases, but do not employ domain knowledge. Both methods are limited in learning capacity. This study proposes a Multi-Agent Environmental Decision Support System, which integrates an Inductive Reasoning Agent, and an Environmental Learning Agent to perform new model formation and problem solving. New models can be generated by the coordination of both the Inductive Agent and the Deductive Agent. At the same time, a model repair process is undertaken by the Environmental Learning Agent when the prediction resulting from existing knowledge fails.  相似文献   

17.
Assembly line balancing problems (ALBP) consist in assigning the total workload for manufacturing a product to stations of an assembly line as typically applied in automotive industry. The assignment of tasks to stations is due to restrictions which can be expressed in a precedence graph. However, (automotive) manufacturers usually do not have sufficient information on their precedence graphs. As a consequence, the elaborate solution procedures for different versions of ALBP developed by more than 50 years of intensive research are often not applicable in practice.Unfortunately, the known approaches for precedence graph generation are not suitable for the conditions in the automotive industry. Therefore, we describe a new graph generation approach that is based on learning from past feasible production sequences and forms a sufficient precedence graph that guarantees feasible line balances. Computational experiments indicate that the proposed procedure is able to approximate the real precedence graph sufficiently well to detect optimal or nearly optimal solutions for a well-known benchmark data set. Even for additional large instances with up to 1,000 tasks, considerable improvements of line balances are possible. Thus, the new approach seems to be a major step to close the gap between theoretical line balancing research and practice of assembly line planning.  相似文献   

18.
An estimation of distribution algorithm for nurse scheduling   总被引:2,自引:0,他引:2  
Schedules can be built in a similar way to a human scheduler by using a set of rules that involve domain knowledge. This paper presents an Estimation of Distribution Algorithm (EDA) for the nurse scheduling problem, which involves choosing a suitable scheduling rule from a set for the assignment of each nurse. Unlike previous work that used Genetic Algorithms (GAs) to implement implicit learning, the learning in the proposed algorithm is explicit, i.e. we identify and mix building blocks directly. The EDA is applied to implement such explicit learning by building a Bayesian network of the joint distribution of solutions. The conditional probability of each variable in the network is computed according to an initial set of promising solutions. Subsequently, each new instance for each variable is generated by using the corresponding conditional probabilities, until all variables have been generated, i.e. in our case, a new rule string has been obtained. Another set of rule strings will be generated in this way, some of which will replace previous strings based on fitness selection. If stopping conditions are not met, the conditional probabilities for all nodes in the Bayesian network are updated again using the current set of promising rule strings. Computational results from 52 real data instances demonstrate the success of this approach. It is also suggested that the learning mechanism in the proposed approach might be suitable for other scheduling problems.  相似文献   

19.
The classical approach to the acquisition of knowledge in artificial intelligence has been to program the intelligence into the machine in the form of specific rules for the application of the knowledge: expert systems. Unfortunately, the amount of time and resources required to program an expert system with sufficient knowledge for non-trivial problem-solving is prohibitively large. An alternative approach is to allow the machine tolearn the rules based upon trial-and-error interaction with the environment, much as humans do. This will require endowing the machine with a sophisticated set of sensors for the perception of the external world, the ability to generate trial actions based upon this perceived information, and a dynamic evaluation policy to allow it to measure the effectiveness of its trial actions and modify its repertoire accordingly. The principles underlying this paradigm, known ascollective learning systems theory, have already been applied to sophisticated gaming problems, demonstrating robust learning and dynamic adaptivity.The fundamental building block of a collective learning system is thelearning cell, which may be embedded in a massively parallel, hierarchical data communications network. Such a network comprising 100 million learning cells will approach the intelligence capacity of the human cortex. In the not-too-distant future, it may be possible to build a race of robotic slaves to perform a wide variety of tasks in our culture. This goal, while irresistibly attractive, is most certainly fraught with severe social, political, moral, and economic difficulties.This paper was given as an invited talk on the 12th Symposium on Operations Research, University of Passau, September 1987.  相似文献   

20.
We present a method for finding exact solutions of Max-Cut, the problem of finding a cut of maximum weight in a weighted graph. We use a Branch-and-Bound setting that applies a dynamic version of the bundle method as bounding procedure. This approach uses Lagrangian duality to obtain a “nearly optimal” solution of the basic semidefinite Max-Cut relaxation, strengthened by triangle inequalities. The expensive part of our bounding procedure is solving the basic semidefinite relaxation of the Max-Cut problem, which has to be done several times during the bounding process. We review other solution approaches and compare the numerical results with our method. We also extend our experiments to instances of unconstrained quadratic 0–1 optimization and to instances of the graph equipartition problem. The experiments show that our method nearly always outperforms all other approaches. In particular, for dense graphs, where linear programming-based methods fail, our method performs very well. Exact solutions are obtained in a reasonable time for any instance of size up to n = 100, independent of the density. For some problems of special structure we can solve even larger problem classes. We could prove optimality for several problems of the literature where, to the best of our knowledge, no other method is able to do so. Supported in part by the EU project Algorithmic Discrete Optimization (ADONET), MRTN-CT-2003-504438.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号