首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 1 毫秒
1.
2.
Free fatty acid (FFA) content in FFA-rich mixed crude palm oil (MCPO) was reduced through a continuous esterification process. The reaction conditions were optimized, the yield purified esterified oil was determined, and the average total electricity consumption of the entire process was evaluated. The key component of this study was the cost-effective, 3D-printed rotor that was installed in a continuous rotor–stator hydrodynamic reactor. The surface of the rotor was designed with spherical holes where the center-to-center distance between them was fixed. Response surface methodology (RSM) using central composite design (CCD) was employed to analyze the design of experiments (DOE) and optimize FFA-content reduction. The optimized conditions were 17.7 vol% methanol, 2.9 vol% sulfuric acid, a 3000 rpm rotor speed, and surface holes measuring 4 mm in diameter and 6 mm in depth. The experimental results showed that the FFA content in MCPO was reduced from 11.456 to 1.028 wt% upon esterification under these optimal conditions. The maximum yield of esterified oil from the phase separation step was 96.07 vol%, and that of the purified esterified oil was 91.27 vol%. The average total energy consumed by this hydrodynamic cavitation reactor to produce this esterified oil was 0.0264 kW h/L. This 3D printed rotor–stator reactor is a promising, novel reactor technology for producing biodiesel from FFA-rich oils.  相似文献   

3.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号