首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, narrow electrostatic precipitators (ESPs) have become a subject of interest because of their possible application for the cleaning of the exhaust gases emitted by diesel engines. Diesel engines emit fine particles, which are harmful to human and animal health. There are several methods for decrease particulate emission from a diesel engines, but up to now, these methods are not enough effective or very expensive. Therefore, an electrostatic precipitation was proposed as an alternative method for control of a diesel particulate emission.In this work, results of electrohydrodynamic (EHD) secondary flow and particle collection efficiency measurements in a narrow wire-cylinder type ESP are presented. The ESP was a glass cylinder (300 mm × 29 mm) equipped with a wire discharge electrode and two collecting cylinder-electrodes. A 0.23 mm in diameter and 100 mm long stainless-steel discharge wire electrode was mounted in the center of the cylinder, parallel to the main flow direction. The collecting electrodes were made of stainless steel cylinders, each with a length of 100 mm and inner diameter of 25.5 mm. An air flow seeded with a cigarette smoke was blown along the ESP duct with an average velocity of 0.9 m/s.The EHD secondary flow was measured using 2-dimensional particle image velocimetry (PIV) method. The PIV measurements were carried out in the wire electrode mid-plane, perpendicularly to the wire and the collecting electrodes. The results show similarities and differences of the particle flow in the wire-cylinder type ESP for a negative and a positive DC voltage polarity.The collection efficiency was calculated from the fractional particle concentration. The fractional particle concentration was measured using the optical aerosol spectrometer. The results of the fractional collection efficiency confirmed the common view that the collection efficiency of fine particles in the ESP increases with increasing voltage and it is higher for negative voltage polarity and decreases when decreasing particle diameter.  相似文献   

2.
Enhancement of heat transfer in a heat exchanger via a DC corona discharge was studied experimentally using a single-tube shell-and-tube heat exchanger. Air was the working fluid in both the tube and shell sides. Excitation of the tube side was via a single wire electrode, while that of the shell side was via four rod electrodes oriented symmetrically at 90° intervals. Three series of experiments were performed: (1) excitation of the tube side only, (2) excitation of the shell side only, and (3) simultaneous excitation of the tube and shell sides. Both heat transfer and pressure drop measurements were performed, with Reynolds number and electric field potential as parametric quantities in the tube and shell sides. It was found that highest enhancements take place when the tube and shell sides are excited simultaneously, yielding a 322% increase in the overall heat transfer coefficient. Study of the heat transfer enhancements per unit pumping power indicates that for the range of parameters studied, the technique is most efficient at moderate Reynolds numbers and at electrode potentials in the midrange between threshold and sparkover limits.  相似文献   

3.
This project presents the results of investigation of current/voltage characteristics of brush type discharge electrodes (BTDE) in tube type electrostatic precipitators and the effect on operation. Experimental investigations were conducted with discharge electrodes of different wire diameter and different brush diameter. The effect of electrode geometry on current/voltage behavior was recorded. Corona current with brush type discharge electrodes was modeled and compared with experimental data. Brush type discharge electrodes produce an enhanced corona current compared with wire type discharge electrodes. Limited enhanced corona has improving effect on collection efficiency. An adjusted correlation was therefore deduced from experimentally obtained current/voltage data with BTDE.  相似文献   

4.
Although improving electrostatic precipitator (ESP) collection of fine particles (micron and submicron sizes) remains of interest, it is not yet clear whether the turbulent flow patterns caused by the presence of electric field and charge in ESPs advance or deteriorate fine particle precipitation process. In this paper, results of the laser flow visualization and Particle Image Velocimetry (PIV) measurements of the particle flow velocity fields in a wire-to-plate type ESP model with seven wire electrodes are presented. Both experiments were carried out for negative and positive polarity of the wire electrodes. The laser flow visualization and PIV measurements clearly confirmed formation of the secondary flow (velocity of several tens of cm/s) in the ESP model, which interacts with the primary flow. The particle flow pattern changes caused by the strong interaction between the primary and secondary flows are more pronounced for higher operating voltages (higher electrohydrodynamic numbernehd) and lower primary flow velocities (lower Reynolds number Re). The particle flow patterns for the positive voltage polarity of the wire electrodes are more stable and regular than those for the negative voltage polarity due to the nonuniformity of the negative corona along the wire electrodes (tufts).  相似文献   

5.
《Journal of Electrostatics》2007,65(12):728-734
In this work, results of three-dimensional (3D) Particle Image Velocimetry (PIV) measurements of the electrohydrodynamic (EHD) flow velocity fields in a narrow electrostatic precipitator (ESP) with a longitudinal-to-flow placed wire electrode are presented. The ESP was a narrow transparent acrylic box (90 mm×30 mm×30 mm). The electrode set consisted of a single wire discharge electrode and two plane collecting electrodes. Either two smooth stainless-steel plates or two stainless-steel plane meshes with nylon flocks were used as the collecting electrodes. The 3D PIV measurements were carried out in two parallel planes, placed longitudinally to the flow duct. The positive DC voltage of up to 9.5 kV was applied to the wire electrode through a 10 MΩ resistor. The collecting electrodes were grounded. The measurements were carried out at a primary flow velocity of 0.5 m/s. Obtained results show that the flow patterns for the smooth-plate electrodes and for the flocking plane electrodes are similar in the bulk of the flow. However, the flow velocities near the flocking plane electrodes are much lower than those near the smooth-plate electrodes. This is a beneficial phenomenon, because the lower the flow near the collecting electrodes, the lower re-entrainment of the particles deposited on the collecting electrodes occurs.  相似文献   

6.
This work was aimed at measurements of the electrohydrodynamic (EHD) secondary flow in a non-thermal plasma reactor using three-dimensional particle image velocimetry (3D PIV) method. The wide-type non-thermal plasma reactor used in this work was an acrylic box with a wire discharge electrode and two plate collecting electrodes. The positive DC voltage was applied to the wire electrode through a 10 MΩ resistor. The collecting electrodes were grounded. The voltage applied to the wire electrode was 28 kV. Air flow seeded with a cigarette smoke was blown along the reactor duct with an average velocity of 0.6 m/s. The 3D PIV velocity fields measurements were carried out in four parallel planes stretched along the reactor duct, perpendicularly to the wire electrode and plate electrodes. The measured flow velocity fields illustrate complex nature of the EHD induced secondary flow in the non-thermal plasma reactor.  相似文献   

7.
Lab-scale, two-stage electrostatic precipitation system comprising of precharging stage, in which PM2.5 particles are electrically charged, and collection stage, in which the charged particles are removed from the flowing gas by electric field, was investigated in this paper. Two types of electrostatic particle prechargers were compared with respect to the collection efficiency of the system: (1) co-flow precharger, in which ionic current was generated co-currently with the gas conveying the particles, and (2) counter-flow precharger, in which ionic current was generated oppositely to the flowing gas. In each case, the electrodes of precharger were supplied with DC or AC high-voltage in order to compare the effect of discharge mode on the collection efficiency of two-stage electrostatic precipitator. The collection stage was formed by two parallel-plate electrodes connected to DC high voltage source. Plate electrodes without discharge points (spikes) are corona-free electrodes, which prevent the collection stage from electrical discharges, and reduce the probability of back discharge ignition. The back discharge decreases collection efficiency of conventional electrostatic precipitators.It was concluded that the co-flow electrode configuration of the precharger, supplied with DC high voltage, has the highest total number collection efficiency for PM2.5 particles, higher than 95% and the mass collection efficiency larger than 99%. The counter-flow precharger provided only about 90% number collection efficiency of two-stage electrostatic precipitator. It was also shown that by AC electrode excitation, the collection efficiency of the system is lower than for DC supply. The two-stage electrostatic precipitators allowed obtaining higher fractional collection efficiency for PM2.5 particles than other conventional systems and can be recommended as highly effective devices for gas cleaning in power plants or cement industry.  相似文献   

8.
Results of 2- and 3-dimensional Particle Image Velocimetry (PIV) measurements of the flow velocity fields in narrow electrostatic precipitators (ESPs) with either a longitudinal or transverse wire electrode are presented in this work. The obtained results confirmed that the particle flow in the ESP have a strongly 3D character mainly due to applied voltage and narrow cross section of the ESP duct. It was found that several vortices were formed along and across the ESP duct. The complex character of the flow in both ESP may considerably affect the particle collection efficiency of the ESP. This issue is under investigation.  相似文献   

9.
In order to improve the particle collection efficiency of the electrostatic precipitator (ESP), a transverse plate ESP with bipolar discharge electrodes is proposed. The simulations of the velocity distribution have shown that when the inlet velocity is 1 m/s, within the range of 40 mm from electrode plate, the average velocities of windward side and leeward side are less than 0.7 m/s and 0.3 m/s respectively. It is clear that the velocity near the collection electrode plate of this bipolar ESP is much lower than that of the ordinary ESP at the same inlet velocity. This low velocity can lead to higher efficiency for fine dust collection due to the less dust re-entrainment in ESP. It is also found that the average velocities are getting lower when the distance between plates electrodes are greater than 150 mm in accordance with the simulations. The voltage current characteristics of the bipolar ESP are superior to the ordinary ESP. The pressure drop of the bipolar ESP is about 30% higher than that of the ordinary one. The dust penetration of the bipolar ESP is about 54% less than that of the ordinary ESP when the sintering dust with 25.405 μm mass median diameter is used as the test particulate under the condition of the electric field from 2.1 kV/cm to 3.2 kV/cm and the velocity from 1.0 m/s to 1.5 m/s.  相似文献   

10.
In this work, the results of electrohydrodynamic (EHD) secondary flow and particle collection efficiency measurements in a spike-plate type electrostatic precipitator (ESP) are presented. The EHD secondary flow was measured using 2- and 3-dimensional particle image velocimetry (PIV) method under the negative DC voltage. The PIV measurements were carried out in several cross-sectional planes along and across the ESP duct. The results show a complex and turbulent flow structure in the ESP. The EHD secondary flow significantly depends on applied voltage and measuring cross-sectional plane position in respect to the spike tip. The partial collection efficiency of the ESP was measured for negative and positive DC voltage. The particle concentration with and without discharge was measured at the ESP exit using an optical aerosol spectrometer.  相似文献   

11.
In this paper, a new electrostatic precipitator (ESP) with asymmetrical wire-to-cylinder configuration is investigated experimentally and numerically. The main objective is to evaluate the collection efficiency of high resistivity particles.The electrical measurements show that the corona discharge behavior is similar to that obtained in symmetrical wire-to-cylinder configuration. Results show that the collection efficiency can reach 95% in the case of negative corona discharge.In order to understand the particle trajectories inside the ESP, the experimental results are compared with numerical simulation by using a coupled model. Numerical results indicate that particles can be collected on the collecting electrode backside.  相似文献   

12.
《Journal of Electrostatics》2006,64(7-9):498-505
In this work, results of two- and three-dimensional particle image velocimetry (PIV) measurements of the flow velocity fields in a wide spacing spike–plate electrostatic precipitator (ESP) under positive polarity are presented. A DC voltage of positive polarity (up to 28 kV) was applied to the spike electrode. The average gas flow velocity was 0.6 m/s. The PIV measurements were carried out in four planes perpendicular to the plate electrodes. Three parallel planes passed along the ESP while one plane passed across the ESP duct. The results show that electrohydrodynamic (EHD) secondary flow with relatively strong vortices exist in the ESP. The EHD secondary flow pattern depends on applied voltage and measuring plane position in respect to the spike tip. The strongest vortices occur in the plane passing through the tip of the upstream-directed spike. These relatively strong EHD vortices may hinder collection of the particles in the diameter range of 0.1–1 μm in the wide electrode spacing spike–plate ESPs.  相似文献   

13.
The dual electrode, which consists of an ionizing wire in parallel with a metallic cylindrical support, both connected at same high voltage supply, has been extensively studied in relation with various electrostatic applications. In practical situations, the dual electrode may be installed in the proximity of metallic objects that will affect the electric field repartition and, hence, the development of the discharge. The aim of the present work is to analyze the operating conditions of such electrodes in the presence of metallic rods or plates connected at fixed or floating potentials. The Superficial Charge Simulation Method was then employed for the numerical analysis of several electrode arrangements involving a dual corona electrode and a metallic rod parallel to it. The paper also reports the results of current–voltage characteristics and current density repartition measurements for the dual corona electrode alone or in the presence of other bodies at same or floating potential. The proximity of metallic objects leads to the increase of corona inception threshold and shifts the I–V characteristics to higher voltages. The objects at floating potential may reduce the discharge current to very low values, while those energized at the same voltage as the ionizing wire may simply anneal the discharge.  相似文献   

14.
The novel electrohydrodynamically-assisted electrostatic precipitator (EHD ESP) was developed to suppress particle reentrainment for collection of low resistive diesel particulates. The collection efficiency was compared between vertically and horizontally oriented electrodes of the EHD ESP using 400 cc diesel engine. The particle size dependent collection efficiency was evaluated for the particle size ranging in 20 to 5000 nm using a scanning mobility particle sizer (SMPS) and a particle counter (PC). Both horizontally and vertically oriented EHD ESP showed an excellent suppression of particle reentrainment. However, the horizontally oriented electrode EHD ESP showed significantly improved for the particle size of 300–500 nm in comparison with vertically oriented electrode EHD ESP, resulting in more than 90% collection efficiency for all particle size range. The EHD ESP has high potential especially for highly concentrated marine diesel engine emission control.  相似文献   

15.
We constructed a single-stage, laboratory-scale electrostatic precipitator (ESP) and evaluated its physical and microbial collection efficacies. Ground rice husk was examined as a representative model of airborne particles carrying microorganisms (bacteria, molds and yeasts). Physical and microbial collection efficacies were evaluated at different voltages applied to the negative discharge electrode without ozone generation. The best collection efficiencies were observed at an applied voltage of ?6.0 kV, resulting in collection efficiencies of over 90% for the physical sample and 99.95% for bacteria. No molds or yeasts in the ground rice husk passed through the ESP operating at ?6.0 kV applied voltage.  相似文献   

16.
In this paper a laboratory-scale model for prediction of the voltage–current characteristics of wire–plate electrostatic precipitators under clean air conditions is presented and experimentally validated. The model investigates the effect of electrode configurations, wire diameter, spacing between wire electrodes, number of discharge wires and distance between collecting plates that on voltage–current characteristic of wire–plate electrostatic precipitators. Also, this paper presents a simulation model, based on the Finite Difference Method (FDM), to simulate electric conditions of wire–plate electrostatic precipitators under clean air conditions. The experimental results of some models are compared with those obtained from the simulation models.  相似文献   

17.
Electrostatic precipitators (ESPs) with the wet membrane-based collecting electrode play an important role on the flue gas cleaning process. However, the mechanism researches on the excellent collection efficiency of the membrane-based ESPs are insufficient. This paper aims at characterizing the excellent collection efficiency of the ESPs in the aspect of the electrical characteristics. The discharge current density and distribution of the metal and wet membranes collecting electrode were measured using the boundary probe method under different conditions. The differences of the discharge current density and distribution between the wet membranes collecting electrode and the metal one were discussed in detail. In addition, the effects of applied voltage, distance between the electrodes and discharge electrode construction on the difference of the discharge current density between the wet membranes electrode and the metal one were also presented. The results show that the discharge current density is strongly increased by the wet membranes electrode, the increased discharge current density is the main reason for the excellent collection efficiency of the membrane-based WESPs.  相似文献   

18.
In order to study the influence of plasma on electrode, atmospheric pressure dielectric barrier discharge (DBD) air plasma is employed here to treat copper electrode surface. Plasma is generated between the parallel plate electrodes by means of high voltage produced by a high-frequency power supply with transformer. Electrode surface alterations induced by air plasma are investigated by using field emission scanning electron microscope (FE-SEM), X-ray energy dispersion spectroscopy (EDS) and contact angle measurement. The results show that DBD air plasma removes the organic contaminant on surface and causes electrode surface roughness, oxidization and nitridation. In addition, surface wettability is also improved, as concluded from contact angle measurements.  相似文献   

19.
The performance of a KrF excimer laser, excited by a discharge produced in a quartz tube between two metallic electrodes at its end and the inner tube wall serving as a dielectric electrode, is described. The dielectric electrode is capacitively coupled to a metallic electrode surrounding the quartz tube coaxially. Laser output energies up to 0.9 mJ in pulses having a duration of 6 ns FWHM could be obtained at a driving voltage of 100 kV.  相似文献   

20.
An analysis of the electrostatic gas cleaning fundamental phenomenon shows an essential influence of discharge electrode construction on the gas cleaning process efficiency.In the physical model tests there were used rigid discharge electrodes with corona emitting elements of various geometries. Different constructions of discharge electrode were tested in the aspect of discharge current uniform distribution on collecting electrode surfaces. Measurements of discharge current distribution has been carried out for discharge electrodes with different spike shapes and in different electric field geometry. The research aim was to determine the optimal discharge electrode construction ensuring high collection efficiency of fine particles. Collection efficiency measurements of selected fly ash samples (from coal fired boilers) were carried out on a laboratory testing bench in a horizontal electrostatic precipitator model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号