首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We present a study of the primary optical transitions and recombination dynamics in InGaAs self-assembled quantum nanostructures with different shape. Starting from the same quantum dot seeding layer, and depending on the overgrowth conditions, these new nanostructures can be tailored in shape and are characterized by heights lower than 2 nm and base lengths around 100 nm. The geometrical shape strongly influences the electronic and optical properties of these nanostructuctures. We measure for them ground state optical transitions in the range 1.25–1.35 eV and varying energy splitting between their excited states. The temperature dependence of the exciton recombination dynamics is reported focusing on the intermediate temperature regime (before thermal escape begins to be important). In this range, an important increase of the effective photoluminescence decay time is observed and attributed to the state filling and exciton thermalization between excited and ground states. A rate equation model is also developed reproducing quite well the observed exciton dynamics.  相似文献   

4.
GaSb nanostructures in GaAs, grown by metalorganic chemical vapor deposition, were studied with cross-sectional scanning tunneling microscopy. Three different samples were examined, containing a thin quantum well, a quantum well near the critical thickness for dot formation, and finally self-organized quantum dots with base lengths of 5–8 nm and heights of about 2 nm. The dots are intermixed with a GaSb content between 60% and 100%. Also small 3D and 2D islands were observed, possibly representing quantum dots in an early growth stage and quantum dot precursors. All GaSb layers exhibit gaps, which are indications of an island-like growth mode during epitaxy.  相似文献   

5.
We present a theoretical analysis of the electronic structure of GaN/AlN quantum dots (QD) with a hexagonal, truncated-pyramidal shape. We use a Fourier-transform technique that we had previously developed to calculate the 3D strain and built-in electric fields due to the QD structure. The electron and hole energy levels and wavefunctions are then calculated in the framework of an 8-band k·P model (with zero spin–orbit splitting), using an efficient plane-wave expansion method. We show that because of the large built-in piezoelectric and spontaneous polarization fields, the calculated transition energy is sensitive to variations in the wetting layer width, pyramid top diameter and also to the values chosen for the piezo-electric constants and spontaneous polarization values of bulk GaN and AlN. Numerical results are presented for a set of GaN/AlN QD structures that have been studied experimentally and described in the literature. We find that the calculated value of the ground-state optical transition energy for these structures is in good agreement with experiment.  相似文献   

6.
Theoretical calculations of electron–phonon scattering rates in AlGaN/GaN quantum dots (QDs) have been performed by means of effective mass approximation in the frame of finite element method. The influence of a symmetry breaking of the carrier's wave function on the electron dephasing time is investigated for various QDs shapes. In a QD system the electron energy increases when the QD shape changes from a spherical to a non-spherical form. In addition, the influence of the QD shape upon the electronic structure can be modulated by external magnetic fields. We also show that the electron–acoustic phonon scattering rates strongly depend upon both the QD shape and the applied magnetic field. As an additional parameter, the QD shape can be used to modify the electron–acoustic phonon interaction in a wide range. Moreover, the scattering rate of different transitions, such as Δm=0(1), presents distinct magnetic field dependency.  相似文献   

7.
57Fe Mössbauer and photoemission measurements were performed on meltquenched amorphous Fe(Zr, B) and (Fe, Ni)B alloys. The atomic and electronic structure of Fe90Zr10 and Fe88B12 glasses were found to be different. Half of the Zr content could be replaced by B in the Fe90Zr10 glass without changing its structure. Mossbauer investigation of the amorphous (Fe1?xNix)100?yBy (0<=x<=0.80, 12<=y<=40) system indicates preferential arrangement of Fe and Ni atoms on the transition metal sites. According to the present XPS measurements there is a remarkable shift of 0.5 eV to higher binding energies of the B ls core level energy in the Ni rich glasses compared to Fe88B12 corresponding to a stronger binding between the Ni and the B atoms than that of Fe and B.  相似文献   

8.
In the special case of a spherically symmetric solution of Einstein equations coupled to a scalar massless field, we examine the consequences on the exact solution imposed by a semiclassical treatment of gravitational interaction when the scalar field is quantized. In agreement with Doplicher et al. (1995)  [2], imposing the principle of gravitational stability against localization of events, we find that the region where an event is localized, or where initial conditions can be assigned, has a minimal extension, of the order of the Planck length. This conclusion, though limited to the case of spherical symmetry, is more general than that of  [2] since it does not require the use of the notion of energy through the Heisenberg Principle, nor of any approximation as the linearized Einstein equations.We shall then describe the influence of this minimal length scale in a cosmological model, namely a simple universe filled with radiation, which is effectively described by a conformally coupled scalar field in a conformal KMS state. Solving the backreaction, a power law inflation scenario appears close to the initial singularity. Furthermore, the initial singularity becomes light like and thus the standard horizon problem is avoided in this simple model. This indication goes in the same direction as those drawn at a heuristic level from a full use of the principle of gravitational stability against localization of events, which point to a background dependence of the effective Planck length, through which a-causal effects may be transmitted.  相似文献   

9.
The time evolution of the quantum entropy in a coherently driven triple quantum dot molecule is investigated. The entanglement of the quantum dot molecule and its spontaneous emission field is coherently controlled by the gate voltage and the rate of an incoherent pump field. The degree of entanglement between a triple quantum dot molecule and its spontaneous emission fields is decreased by increasing the tunneling parameter.  相似文献   

10.
The stable boron carbon nanotube superlattices (BCNTSLs) that are constructed by periodically connecting carbon nanotube (CNT) and boron nanotube (BNT) with different lengths and diameters are predicted by employing the density functional first-principles calculations. The geometrical and electronic structures as well as quantum conductance of BCNTSLs are studied. It is found that the superlattices can be metallic or semiconducting depending on tube diameters and the ratio of BNT to CNT segments in a periodic unit. The confined states in the superlattice are observed. The present study could offer a useful way for designing some functional nanodevices.  相似文献   

11.
The LPCTrap facility is coupled to the low-energy beam line LIRAT of the SPIRAL source at GANIL (France). The facility comprises an RFQ trap for beam preparation and a transparent Paul trap for in-trap decay studies. The system has been tested for several ion species. The Paul trap has been fully characterized for 6Li+ and 23Na+ ions. This characterization together with GEANT4 simulations of the in-trap decay setup (Paul trap and detection system) has permitted to predict the effect of the size of the ion cloud on the decay study of 6He+.  相似文献   

12.
We show nanomechanical force is useful to dynamically control the optical response of self-assembled quantum dots, giving a method to shift electron and heavy hole levels, interval of electron and heavy hole energy levels, and the emission wavelength of quantum dots (QDs). The strain, the electron energy levels, and heavy hole energy levels of InAs/GaAs(001) quantum dots with vertical nanomechanical force are investigated. Both the lattice mismatch and nanomechanical force are considered at the same time. The results show that the hydrostatic and the biaxial strains inside the QDs subjected to nanomechanical force vary with nanomechanical force. That gives the control for tailoring band gaps and optical response. Moreover, due to strain-modified energy, the band edge is also influenced by nanomechanical force. The nanomechanical force is shown to influence the band edge. As is well known, the band offset affects the electronic structure, which shows that the nanomechanical force is proven to be useful to tailor the emission wavelength of QDs. Our research helps to better understand how the nanomechanical force can be used to dynamically control the optics of quantum dots.  相似文献   

13.
The folding of the chromatin filament and, in particular, the organization of genomic DNA within metaphase chromosomes has attracted the interest of many laboratories during the last five decades. This review discusses our current understanding of chromatin higher-order structure based on results obtained with transmission electron microscopy (TEM), cryo-electron microscopy (cryo-EM), and different atomic force microscopy (AFM) techniques.Chromatin isolated from different cell types in buffers without cations form extended filaments with nucleosomes visible as separated units. In presence of low concentrations of Mg2+, chromatin filaments are folded into fibers having a diameter of ∼30 nm. Highly compact fibers were obtained with isolated chromatin fragments in solutions containing 1–2 mM Mg2+. The high density of these fibers suggested that the successive turns of the chromatin filament are interdigitated. Similar results were obtained with reconstituted nucleosome arrays under the same ionic conditions. This led to the proposal of compact interdigitated solenoid models having a helical pitch of 4–5 nm. These findings, together with the observation of columns of stacked nucleosomes in different liquid crystal phases formed by aggregation of nucleosome core particles at high concentration, and different experimental evidences obtained using other approaches, indicate that face-to-face interactions between nucleosomes are very important for the formation of dense chromatin structures.Chromatin fibers were observed in metaphase chromosome preparations in deionized water and in buffers containing EDTA, but chromosomes in presence of the Mg2+ concentrations found in metaphase (5–22 mM) are very compact, without visible fibers. Moreover, a recent cryo-electron microscopy analysis of vitreous sections of mitotic cells indicated that chromatin has a disordered organization, which does not support the existence of 30-nm fibers in condensed chromosomes. TEM images of partially denatured chromosomes obtained using different procedures that maintain the ionic conditions of metaphase showed that bulk chromatin in chromosomes is organized forming multilayered plate-like structures. The structure and mechanical properties of these plates were studied using cryo-EM, electron tomography, AFM imaging in aqueous media, and AFM-based nanotribology and force spectroscopy. The results obtained indicated that the chromatin filament forms a flexible two-dimensional network, in which DNA is the main component responsible for the mechanical strength observed in friction force measurements. The discovery of this unexpected structure based on a planar geometry has opened completely new possibilities for the understanding of chromatin folding in metaphase chromosomes. It was proposed that chromatids are formed by many stacked thin chromatin plates oriented perpendicular to the chromatid axis. Different experimental evidences indicated that nucleosomes in the plates are irregularly oriented, and that the successive layers are interdigitated (the apparent layer thickness is 5–6 nm), allowing face-to-face interactions between nucleosomes of adjacent layers. The high density of this structure is in agreement with the high concentration of DNA observed in metaphase chromosomes of different species, and the irregular orientation of nucleosomes within the plates make these results compatible with those obtained with mitotic cell cryo-sections. The multilaminar chromatin structure proposed for chromosomes allows an easy explanation of chromosome banding and of the band splitting observed in stretched chromosomes.  相似文献   

14.
15.
宋鑫  冯淏  刘玉敏  俞重远  刘建涛 《中国物理 B》2013,22(1):17304-017304
The strain and electron energy levels of InAs/GaAs(001) quantum dots (QDs) with a GaNAs strain compensation layer (SCL) are investigated. The results show that both the hydrostatic and biaxial strain inside the QDs with a GaNAs SCL are reduced compared with those with GaAs capping layers. Moreover, most of the compressive strain in the growth surface is compensated by the tensile strain of the GaNAs SCL, which implies that the influence of the strain environment of underlying QDs upon the next-layer QDs’ growth surface is weak and suggests that the homogeneity and density of QDs can be improved. Our results are consistent with the published experimental literature. A GaNAs SCL is shown to influence the strain and band edge. As is known, the strain and the band offset affect the electronic structure, which shows that the SCL is proved to be useful to tailor the emission wavelength of QDs. Our research helps to better understand how the strain compensation technology can be applied to the growth of stacked QDs, which are useful in solar cells and laser devices.  相似文献   

16.
The electronic structures of self-assembled InAs1−xNx/GaAs nanostructures from quantum lens to quantum rings (QRs) are calculated using the 10-band k.p method and the valence force field (VFF) method. With the variation of shape of the nanostructure and nitrogen (N) content, it shows that the N and the strains can significantly affect the energy levels especially the conduction band because the N resonant state has repulsion interaction with the conduction band due to the band anticrossing (BAC). The structures with N and greater height have smaller transition energy, and the structures with N have greater optical gain due to its overwhelming greater value of factor fc+fv−1fc+fv1. After analyzing the shape effect, we suggested that the nanostructures with volcano shape are preferred because the maximum optical gain occurs for quantum volcano. With our simulation result, researchers could select quantum dots (QDs) structures to design laser with better performance.  相似文献   

17.
18.
通过价键电子理论工具,计算得到了钙钛矿型单相多铁材料BiFcO3"赝立方"顺电相和斜方铁电相价键电子结构,分析了价键电子结构变化时其铁电性的影响.计算结果表明,从顺电相到铁电相,BiFeO3晶胞中各类化学键的键长和价键电子数变化各异,其中Bi-O键键长变短,价键电子数增多,共价性显著增强,对铁电相的稳定起到至关重要的作用;Fe-O键长呈现变大和变小两种结果,价键电子数都减小,共价性减弱.计算结果与第一性原理计算进行了比较.  相似文献   

19.
One-electron tunneling through a quantum dot with a strong magnetic field in the direction of the current is studied. The linear magneto-conductance is computed for a model parabolic dot with seven electrons in the intermediate states and for different values of the magnetic field. It is shown that the dot density of states at low excitation energies can be extracted from a precise measurement of the conductance at the upper edge of the Coulomb blockade diamond. We parametrized the density of states with a single “temperature” parameter (in the so called “constant temperature approximation”), and found that this parameter depends very weakly on the magnetic field.  相似文献   

20.
We demonstrated a novel method to detect the van der Waals and the electrostatic force interactions simultaneously on an atomic scale, which is based on frequency modulation detection method. For the first time, the surface structure and the surface charge at atomic-scale point defects on the GaAs(110) surface have been simultaneously resolved with true atomic resolution under ultra-high vacuum condition. From the bias voltage dependence of the image contrast, we can verify that the sign of the atomically resolved surface charge at the point defect was positive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号