首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ion acoustic dressed solitons in a three component plasma consisting of cold ions, hot electrons and positrons are studied. Using reductive perturbation method, Korteweg–de Vries (KdV) equation and a linear inhomogeneous equation, governing respectively the evolution of first and second order potentials are derived for the system. Renormalization procedure of Kodama and Taniuti is used to obtain nonsecular solutions of these coupled equations. It is found that electron–positron–ion plasma system supports only compressive solitons. For a given amplitude of soliton on increasing the positron concentration, velocity of the KdV as well as dressed soliton increases. For any arbitrary values of soliton's amplitude and positron concentration, velocity of the dressed soliton is found to be larger than that of the KdV soliton. For small amplitude of solitons, the width of KdV as well as dressed soliton decreases as positron concentration increases and width of dressed soliton is found to be larger than that of the KdV soliton. However, for a large value of soliton's amplitude as concentration of positrons increases, instead of decreasing width of dressed soliton starts to increase.  相似文献   

2.
The effect of changing the direction of motion of a defect (a soliton of small amplitude) in soliton lattices described by the Korteweg–de Vries and modified Korteweg–de Vries integrable equations (KdV and mKdV) was studied. Manifestation of this effect is possible as a result of the negative phase shift of a small soliton at the moment of nonlinear interaction with large solitons, as noted in [1], within the KdV equation. In the recent paper [2], an expression for the mean soliton velocity in a “cold” KdV-soliton gas has been found using kinetic theory, from which this effect also follows, but this fact has not been mentioned. In the present paper, we will show that the criterion of negative velocity is the same for both the KdV and mKdV equations and it can be obtained using simple kinematic considerations without applying kinetic theory. The averaged dynamics of the “smallest” soliton (defect) in a soliton gas consisting of solitons with random amplitudes has been investigated and the average criterion of changing the sign of the velocity has been derived and confirmed by numerical solutions of the KdV and mKdV equations.  相似文献   

3.
We propose a simple and direct method for generating travelling wave solutions for nonlinear integrable equations. We illustrate how nontrivial solutions for the KdV, the mKdV and the Boussinesq equations can be obtained from simple solutions of linear equations. We describe how using this method, a soliton solution of the KdV equation can yield soliton solutions for the mKdV as well as the Boussinesq equations. Similarly, starting with cnoidal solutions of the KdV equation, we can obtain the corresponding solutions for the mKdV as well as the Boussinesq equations. Simple solutions of linear equations can also lead to cnoidal solutions of nonlinear systems. Finally, we propose and solve some new families of KdV equations and show how soliton solutions are also obtained for the higher order equations of the KdV hierarchy using this method.  相似文献   

4.
When a one-dimensional nonlinear evolution equation could be transformed into a bilinear differential form as F(Dt, Dx)f . f = O, Hirota proposed a condition for the above evolution equation to have arbitrary N-soliton solutions, we call it the 1-dimensional Hirota condition. As far as higher-dimensional nonlinear evolution equations go, a similar condition is established in this paper, also we call it a higher-dimensional Hirota condition, a corresponding judging theory is given. As its applications, a few two-dimensional KdV-type equations possessing arbitrary N-soliton solutions are obtained.  相似文献   

5.
Darboux transformation (DT) provides us with a comprehensive approach to construct the exact and explicit solutions to the negative extended KdV (eKdV) equation, by which some new solutions such as singular soliton, negaton, and positon solutions are computed for the eKdV equation. We rediscover the soliton solution with finiteamplitude in [A.V. Slyunyaev and E.N. Pelinovskii, J. Exp. Theor. Phys. 89 (1999) 173] and discuss the difference between this soliton and the singular soliton. We clarify the relationship between the exact solutions of the eKdV equation and the spectral parameter. Moreover, the interactions of singular two solitons, positon and negaton, positon and soliton, and two positons are studied in detail.  相似文献   

6.
We show that completely integrable equations give multiple complex soliton solutions in addition to multiple real real soliton solutions. We exhibit complex categories of the simplified Hirota’s method to confirm these new findings. To demonstrate the power of the new complex forms, we test it on integrable KdV, fifth-order Lax, modified KdV, fifth-order modified KdV, Burgers, and Sharma–Tasso–Olver equations.  相似文献   

7.
In fluid dynamics, plasma physics and nonlinear optics, Korteweg-de Vries (KdV)-type equations are used to describe certain phenomena. In this paper, a coupled KdV-modified KdV system is investigated. Based on the Bell polynomials and symbolic computation, the bilinear form of such system is derived, and its analytic N-soliton solutions are constructed through the Hirota method. Two types of multi-soliton interactions are found, one with the reverse of solitonic shapes, and the other, without. Both the two types can be considered elastic. For a pair of solutions to such system, u and v, with the number of solitons N even, the soliton shapes of u stay unvaried while those of v reverse after the interaction; with N odd, the soliton shapes of both u and v keep unchanged after the interaction.  相似文献   

8.
In this work, we study the nonlinear integrable couplings of the KdV and the Kadomtsev-Petviashvili (KP) equations. The simplified Hirota’s method will be used for this study. We show that these couplings possess multiple soliton solutions the same as the multiple soliton solutions of the KdV and the KP equations, but differ only in the coefficients of the transformation used. This difference exhibits soliton solutions for some equations and anti-soliton solutions for others.  相似文献   

9.
In fluid dynamics, plasma physics and nonlinear optics, Korteweg-de Vries (KdV)-type equations are used to describe certain phenomena. In this paper, a coupled KdV-modified KdV system is investigated. Based on the Bell polynomials and symbolic computation, the bilinear form of such system is derived, and its analytic N-soliton solutions are constructed through the Hirota method. Two types of multi-soliton interactions are found, one with the reverse of solitonic shapes, and the other, without. Both the two types can be considered elastic. For a pair of solutions to such system, u and v, with the number of solitons N even, the soliton shapes of u stay unvaried while those of v reverse after the interaction; with N odd, the soliton shapes of both u and v keep unchanged after the interaction.  相似文献   

10.
In this work we study an eighth-order KdV-type equations in (1+1) and (2+1) dimensions. The new equations are derived from the KdV6 hierarchy. We show that these equations give multiple soliton solutions the same as the multiple soliton solutions of the KdV6 hierarchy except for the dispersion relations.  相似文献   

11.
We deal with the Wick-type stochastic fractional Korteweg de–Vries(KdV) equation with conformable derivatives.With the aid of the Exp-function method, white noise theory, and Hermite transform, we produce a novel set of exact soliton and periodic wave solutions to the fractional KdV equation with conformable derivatives. With the help of inverse Hermite transform, we get stochastic soliton and periodic wave solutions of the Wick-type stochastic fractional KdV equation with conformable derivatives. Eventually, by an application example, we show how the stochastic solutions can be given as Brownian motion functional solutions.  相似文献   

12.
In this paper, a discrete KdV equation that is related to the famous continuous KdV equation is studied. First, an integrable discrete KdV hierarchy is constructed, from which several new discrete KdV equations are obtained. Second, we correspond the first several discrete equations of this hierarchy to the continuous KdV equation through the continuous limit. Third, the generalized (m, 2Nm)-fold Darboux transformation of the discrete KdV equation is established based on its known Lax pair. Finally, the diverse exact solutions including soliton solutions, rational solutions and mixed solutions on non-zero seed background are obtained by applying the resulting Darboux transformation, and their asymptotic states and physical properties such as amplitude, velocity, phase and energy are analyzed. At the same time, some soliton solutions are numerically simulated to show their dynamic behaviors. The properties and results obtained in this paper may be helpful to understand some physical phenomena described by KdV equations.  相似文献   

13.
R. Sasaki 《Nuclear Physics B》1979,154(2):343-357
All the soliton equations in 1 + 1 dimensions that can be solved by the AKNS 2 × 2 inverse scattering method (for example, the sine-Gordon, KdV or modified KdV equations) are shown to describe pseudospherical surfaces, i.e., surfaces of constant negative Gaussian curvature. This result provides a unified picture of all these soliton equations. Geometrical interpretations of characteristic properties like infinite numbers of conservation laws and Bäcklund transformations and of the soliton solutions themselves are presented. The important role of scale transformations as generating one parameter families of pseudospherical surfaces is pointed out.  相似文献   

14.
15.
Soliton density wave is investigated numerically and analytically in the optimal velocity model (a car-following model) of a one-dimensional traffic flow with open boundaries. Soliton density wave is distinguished from the kink density wave. It is shown that the soliton density wave appears only at the threshold of occurrence of traffic jams. The Korteweg-de Vries (KdV) equation is derived from the optimal velocity model by the use of the nonlinear analysis. It is found that the traffic soliton appears only near the neutral stability line. The soliton solution is analytically obtained from the perturbed KdV equation. It is shown that the soliton solution obtained from the nonlinear analysis is consistent with that of the numerical simulation.  相似文献   

16.
Based on the nonlinearization of Lax pairs, the Korteweg-de Vries (KdV) soliton hierarchy is decomposed into a family of finite-dimensional Hamiltonian systems, whose Liouville integrability is proved by means of the elliptic coordinates. By applying the Abel-Jacobi coordinates on a Riemann surface of hyperelliptic curve, the resulting Hamiltonian flows as well as the KdV soliton hierarchy are ultimately reduced into linear superpositions, expressed by the Abel-Jacobi variables.  相似文献   

17.
The soliton calculation method put forward by Zabusky and Kruskal has played an important role in the development of soliton theory, however numerous numerical results show that even though the parameters satisfy the linear stability condition, nonlinear instability will also occur. We notice an exception in the numerical calculation of soliton, gain the linear stability condition of the second order Leap-frog scheme constructed by Zabusky and Kruskal, and then draw the perturbed equation with the finite difference method. Also, we solve the symmetry group of the KdV equation with the knowledge of the invariance of Lie symmetry group and then discuss whether the perturbed equation and the conservation law keep the corresponding symmetry. The conservation law of KdV equation satisfies the scaling transformation, while the perturbed equation does not satisfy the Galilean invariance condition and the scaling invariance condition. It is demonstrated that the numerical simulation destroy some physical characteristics of the original KdV equation. The nonlinear instability in the calculation of solitons is related to the breaking of symmetry.  相似文献   

18.
H.X. Ge  R.J. Cheng 《Physica A》2010,389(14):2825-663
The lattice hydrodynamic model is not only a simplified version of the macroscopic hydrodynamic model, but also connected with the microscopic car following model closely. The modified Korteweg-de Vries (mKdV) equation related to the density wave in a congested traffic region has been derived near the critical point since Nagatani first proposed it. But the Korteweg-de Vries (KdV) equation near the neutral stability line has not been studied, which has been investigated in detail for the car following model. We devote ourselves to obtaining the KdV equation from the original lattice hydrodynamic models and the KdV soliton solution to describe the traffic jam. Especially, we obtain the general soliton solution of the KdV equation and the mKdV equation. We review several lattice hydrodynamic models, which were proposed recently. We compare the modified models and carry out some analysis. Numerical simulations are conducted to demonstrate the nonlinear analysis results.  相似文献   

19.
丁海勇  徐西祥  杨宏祥 《中国物理》2005,14(9):1687-1690
In this paper, an extended functional transformation is given to solve some nonlinear evolution equations. This function, in fact,is a solution of the famous KdV equation, so this transformation gives a transformation between KdV equation and other soliton equations. Then many new exact solutions can be given by virtue of the solutions of KdV equation.  相似文献   

20.
The extended homoclinic test function method is a kind of classic, efficient and well-developed method to solve nonlinear evolution equations. In this paper, with the help of this approach, we obtain new exact solutions (including kinky periodic solitary-wave solutions, periodic soliton solutions, and cross kink-wave solutions) for the new (2+1)-dimensional KdV equation. These results enrich the variety of the dynamics of higher-dimensionai nonlinear wave field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号