首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Non faradaic yields of anodic contact glow discharge electrolysis (CGDE) originate through H· and OH· radical generated during the process. Scavenging effects of Fe(CN) 6 4? on OH· radicals, in alkaline media have been investigated. A kinetic analysis of the competing reactions of O? with different species in the system leads to an yield of 9.8?mol?mol?electron?1 of OH· and H· radicals each in the liquid phase reaction zone of anodic CGDE in good agreement with the yield reported from a study involving H· radical scavengers.  相似文献   

2.
Anodic contact glow discharge electrolysis (CGDE) is a DC-excited atmospheric pressure discharge, in which a steady non-thermal plasma is generated locally between the surface of an electrolytic solution and an anode in contact with it. The I–U characteristics of CGDE were investigated. The plasma temperatures were estimated to be in the range, 1373–2045 K. Hydroxyl radicals and hydrogen peroxide were the main oxidants generated by CGDE. The hydrogen peroxide concentration reached 31.2 mmol/L (mM) in a phosphate buffer solution without organic substrates. During CGDE, the DFPs and the corresponding total organic carbon (TOC) in water were consumed. Most of the fluorine atoms in the DFPs were converted to fluoride ions, and the fluoride concentration increased steadily. An analysis of the hydroxylation of DFPs suggested that the hydroxyl radicals generated by CGDE were the key species responsible for the degradation of DFPs, and the possible mechanistic routes of the mineralization of DFPs are proposed. The disappearance of DFPs and the TOC as well as the defluorination of the DFPs followed first-order kinetics. The rate of TOC disappearance was relatively constant: 1.00 ± 0.05 × 10?2 min?1. The order of disappearance of the DFPs was 2,6-DFP > 2,3-DFP > 2,5-DFP > 2,4-DFP > 3,4-DFP > 3,5-DFP. In contrast, the order of defluorination of the DFPs was 2,5-DFP > 2,3-DFP > 2,6-DFP > 2,4-DFP > 3,4-DFP > 3,5-DFP. Overall, the order of the reaction rates for each DFP was kDFP > kdF > kTOC.  相似文献   

3.
The photocatalytic oxidation of poisonous or nonbiodegradable organic pollutants in wastewater has been the focus of numerous environmental investiga- tions in recent years. Selecting excellent-performance photocatalytic material is very important in thes…  相似文献   

4.
Polydiethylsiloxane reacts with elemental sulfur at 300–320 °C (ZnCl2 slightly accelerates the process) with evolution of hydrogen sulfide and formation of black lustrous paramagnetic powders (sulfur content up to 38.50%), which possess a noticeable electric conductivity (3.20·10−7 S cm−1 when doped with I2) and redox properties. Polydimethylsiloxanes are stable under the same conditions. In rechargeable lithium batteries, the sulfurized polydiethylsiloxane behaves as an active cathode material allowing charging and discharging of the battery. The specific capacities of the cathodic and anodic processes (80–100 (mA h) g−1) change insignificantly. The hydrolytic stability, elemental analysis, IR and ESR spectra, DSC-TGA and derivatographic analyses data, the electric conductivity, and the character of the electrochemical activity of the polymers synthesized indicate that the polymers contain the polyvinylene disulfide blocks cross-linked by the polysiloxane chain.  相似文献   

5.
This study investigated the commercially available zero-valent copper powder and copper foil to activate molecular oxygen (O2) and ozone for the degradation of organic pollutants. Under aerobic atmospheric conditions, copper powder effectively removed 50 mg/L of acetaminophen (ACT) within 2 h, though the degradation rate using the foil was less than 20% of the powder. However, copper foil activated ozone to effectively degrade ACT. The total organic carbon (TOC) removal reached a high of 58.3% at a catalyst concentration of 40 g/L, but only 26.8% with ozone alone. The initial solution pH and dosage of copper foil were key operational parameters affecting the ozone activation process. H2O2 and Cu(I) were important intermediates in the process as hydroxyl radicals (·OH) were identified via EPR (electron paramagnetic resonance) experiments and free radical scavengers. The generation of ·OH was attributed to a Fenton-like reaction between Cu(I) and H2O2; this free-radical generation mechanism differs from typical transition metal oxide catalysts. This study outlines a promising approach to significantly increase the generation of ·OH and effectively remove refractory organic compounds. Furthermore, these copper products are applied in structural components of practical water treatment. Thus, the study of corrosion resistance to oxygen and ozone in aqueous solution have both a practical and theoretical significance. It was determined that copper products were resistant to oxygen corrosion in aqueous solution, but not resistant to ozone corrosion.  相似文献   

6.
Dy doping and carbon coating are adopted to synthesize a LiFePO4 cathode material in a simple solution environment. The samples were characterized by X‐ray diffraction (XRD) and scanning electron microscopy (SEM). Their electrochemical properties were investigated by cyclic voltammetry (CV) and galvanostatic charge‐discharge tests. An initial discharge capacity of 153 mAh/g was achieved for the LiDy0.02Fe0.98PO4/C composite cathode with a rate of 0.1 C. In addition the electronic conductivity of Dy doped LiFePO4/C was enhanced to 1.9 × 10?2 Scm?1. The results suggest that the improvement of the electrochemical properties are attributed to the dysprosium doping and carbon coating which facilitates the phase transformation between triphylite and heterosite during cycling. XRD data indicate that doping did not destroy the lattice structure of LiFePO4. To evaluate the effect of Dy substitution, cyclic voltammetry was used at room temperature. prepared. From Cv measurement a more symmetric curve with smaller interval between the cathodic and anodic peak current was obtained by Dy substitution. This denoted a decreasing of polarization with Dy substitution, which illustrated an enhancement of electrochemical performances.  相似文献   

7.
A pyrroloquinoline quinone (PQQ) monolayer-functionalized-Au-electrode and a microperoxidase-11 (MP-11)-modified Au-electrode are used as catalytic anode and cathode in a biofuel cell element, respectively. The cathodic oxidizer is H2O2 whereas the anodic fuel-substrate is 1,4-dihydronicotinamide adenine dinucleotide, NADH. The PQQ-monolayer electrode catalyzes the oxidation of NADH in the presence of Ca2+ ions. The MP-11-functionalized electrode catalyzes the reduction of H2O2. The biofuel cell generates an open-circuit voltage, Voc, of ca. 320 mV and a short-circuit current density, Isc, of ca. 30 μA·cm−2. The maximum electrical power, Wmax, extracted from the cell is 8 μW at an external load of 3 kΩ. The fill factor of the biofuel cell, f=Wmax·Isc−1·Voc−1, is ca. 25%.  相似文献   

8.
A new mononuclear nickel(II) complex, [NiL2] (HL = ((2-(5-fluoro-2-hydroxybenzyl)(2-(imidazole-2-yl)ethyl))imine), has been synthesized and characterized by IR, UV–vis and X-ray diffraction technique. The X-ray crystal structure of the complex shows that the coordination environment around Ni(II) ion is an approximate octahedron. Each molecule connects with four adjacent neighbors through strong hydrogen bonding interactions (N–H···O, d(N–O) = 2.687 Å and ∠N–H···O = 158.3(1)°), forming a supramolecular network. The interaction of the complex with DNA was monitored using agarose gel electrophoresis. The results show that the complex has DNA cleavage activity. The cyclic voltammogram shows one pair of anodic and cathodic peaks with E1/2 = ?1.06 V, assigned to the Ni(II)/Ni(I) couple.  相似文献   

9.
In the present work, kinetics of tartrazine decay by UV irradiation and H2O2 photolysis, and the removal of total organic carbon (TOC) under specific experimental conditions was explored. Irradiation experiments were carried out using a photoreactor of original design with a low-pressure Hg vapour lamp. The photodegradation rate of tartrazine was optimised with respect to the H2O2 concentration and temperature for the constant dye concentration of 1.035 × 10?5 M. Tartrazine degradation and the removal of TOC followed the pseudo-first-order kinetics. The much higher k obs value for tartrazine degradation (7.91 × 10?4 s?1) as compared with the TOC removal (2.3 × 10?4 s?1) confirmed the presence of reaction intermediates in the solution.  相似文献   

10.
采用热分解氧化法,在Ni基体上制备以PdO为中间层、RuO2为活性层的Ni/PdO/RuO2复合型活性阴极,并通过XPS、XRD、能量色散X荧光(EDXRF)、SEM、极化曲线、循环伏安法和交流阻抗谱等表征其组成、结构与电化学性能。结果表明,Pd和Ru分别以PdO和RuO2的形式存在于Ni/PdO/RuO2复合型活性阴极中,其含量分别为1.25wt%和1.71wt%;在363K、11mol·L-1NaOH溶液、3kA·m-2电流密度下,Ni/PdO/RuO2复合型活性阴极的析氢过电位比Ni电极和Ni/RuO2电极分别低371和125mV;循环伏安法循环72h后,该复合型活性阴极双电层电容值减小30.6%,比Ni/RuO2电极表层结构更稳定;Ni/PdO/RuO2复合型活性阴极的表面粗糙度大且无明显的裂纹存在,与纯镍电极相比,该复合型活性阴极比表面积增加了31.12倍。  相似文献   

11.
Improvement in long-term stability and cathodic activity of La0.4Ba0.6CoO3 (BLC) was studied by mixing with La0.6Sr0.4Co0.2Fe0.8O3 (LSCF). LSCF exhibits good long-term stability; however, surface activity is not high like Co-based perovskite. On the other hand, the cathodic activity of BLC is high; however, long-term stability was not so good and large degradation at initial period is observed. Combination of the two oxides shows small overpotential as well as improved long-term stability. Effects of BLC/LSCF ratio on stability and overpotential were studied and it was found that BLC–LSCF (7:3) showed the most stable and small cathodic overpotential among the examined compositions. Although the power density was still slightly decreased over 24 h at 0.5 V terminal voltage, the maximum powder density of the cell using BLC–LSCF composite oxides for cathode shows 2.5 times larger than that of the cell using LSCF cathode and 1.06 times larger than that of BLC. Degradation rate is smaller than 4 % from 5 to 24 h on this BLC–LSCF cathode at current density as high as 682 mA/cm2 after 24 h operation.  相似文献   

12.
Contact glow-discharge electrolysis (CGDE) is an unconventional electrolytic phenomenon in which a plasma is sustained by a direct current (dc) glow-discharge between an electrode and the liquid electrolyte around it. A remarkable feature of CGDE is highly nonfaradaic chemical effects at the glow-discharge electrode. During anodic CGDE of an aqueous electrolyte, non-Faradaic yields originate mainly from reactions triggered by H and OH radicals generated in high local concentrations near the anodic plasma/liquid electrolyte interface during the process. The radical-generating potentiality of anodic CGDE was explored for the polymerization of acrylamide in aqueous media. The percentage of monomer conversion, rate of polymerization, charge efficiency, and viscometric average molar mass of the polymers produced were measured as functions of the quantities of electricity passed. The charge efficiency of the polymerization of acrylamide by anodic CGDE was at least 1 order of magnitude higher than that of ordinary electrochemically initiated polymerization. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1584–1588, 2001  相似文献   

13.
Replacing the oxygen evolution reaction (OER) with the thermodynamically favorable electrooxidation of organics is considered a promising approach for the simultaneous production of hydrogen (H2) and high-value chemicals. However, exploring and optimizing efficient electrocatalysts remains a challenge for large-scale production of value-added steroid carbonyl and H2. Herein, Cr-NiO/GF and Cr-Ni3N/GF (GF: graphite felt) electrocatalysts were designed as anode and cathode for the production of steroid carbonyls and H2, respectively. The cooperative Cr-NiO and ACT (4-acetamido-2,2,6,6-tetramethyl-1-piperidine-N-oxyl) electrocatalyst can be extended to the electrooxidation of a series of steroid alcohols to the corresponding aldehydes. Additionally, Cr-Ni3N displays superior electrocatalytic activity for hydrogen evolution reaction (HER), with a low overpotential of 35 mV to deliver 10 mA cm−2. Furthermore, the system coupled with anodic electrooxidation of sterol and cathodic HER exhibited excellent performance with high space-time yield of 48.85 kg m−3 h−1 for steroid carbonyl and 1.82 L h−1 for H2 generation in a two-layer stacked flow cell. Density Functional Theory (DFT) calculations indicated that Cr doping effectively stabilizes ACTH on the NiO surface, and ACTH molecule could be captured via the ketonic oxygen interaction with Cr, resulting in excellent electrocatalytic activity. This work develops a novel approach to the rational design of efficient electrocatalysts for the simultaneous production of H2 and large-scale value-added pharmaceutical carbonyl intermediates.  相似文献   

14.
The oxidation of chlorobenzene (CB) was studied by electrochemical electrolysis using boron-doped diamond (BDD), PbO2 or platine (Pt) as anode and graphite bar as cathode. The effect of applied current density, supporting electrolyte and initial pH value were also studied. The results demonstrated that BDD anode had the best effectiveness and accomplishment of electrochemical degradation of CB compared to PbO2 and Pt anodes. For a current density of 20 mA/cm2 and at pH = 3, the elimination of COD and TOC were about 97% and 98%, respectively, after 360 min of electrolysis with the BDD anode. Pseudo-first order kinetics appears to be the most appropriate to describe the degradation of chlorobenzene. The electrochemical mechanism of chlorobenzene on BDD was proposed based on the identified intermediates.  相似文献   

15.
The Existence of Tetramethylammonium Amalgam It has been proven that mercury incorporates (substituted) ammonium at cathodic reduction. Tetramethylammonium tetrafluoroborate was reacted electrochemically in acetonitrile at –36 °C on a Hg‐cathode. The composition of the product has been estimated to about [N(CH3)4]+ · Hg5 · e. The incorporation of [N(CH3)4] was confirmed by cyclovoltammetry and mass spectroscopy of the decomposition products. The tetramethylammonium amalgam is amorphous (X‐ray and neutron diffraction), diamagnetic, and decomposes at –34 °C.  相似文献   

16.
A dual cell system was used to study the electrogenerative leaching sphalerite-MnO2 under the conditions of presence and absence of Acidithiobacillus ferrooxidans (A. ferrooxidans). The polarization of anode and cathode, and the relationship between the electric quantity (Q) and some factors, such as the dissolved Zn2+, Fe2+, the time in the bio-electro-generating simultaneous leaching (BEGSL) and electro-generating simultaneous leaching (EGSL), were studied. The results show that the dissolved Zn2+ in the presence of A. ferrooxidans is nearly 60% higher than that in the absence of A. ferrooxidans; the electrogenerative quantity in the former is about 134% more than that in the latter. A three-electrode system was applied to study anodic and cathodic self-corrosion current, which was inappreciable compared with the galvanic current between sphalerite and MnO2. The accumulated sulfur on the surface of sulfides produced in the electrogenerative leaching process could be oxidized in the presence of A. ferrooxidans, and the ratio of biological electric quantity reached to 31.72% in 72 h.  相似文献   

17.
Four macrocyclic Schiff-base cobalt complexes, [CoL1][NO3]2 · 3H2O, [CoL2][NO3]2 · 4H2O, [CoL3][NO3]2 · 4H2O and [CoL4][NO3]2 · 2H2O, were synthesized by reaction of salicylaldehyde derivatives with 1,4-bis(3-aminopropoxy)butane or (±)-trans-1,2-diaminocyclohexane and Co(NO3)2 · 6H2O by template effect in methanol. The metals to ligand ratio of the complexes were found to be 1:1. The Co(II) complexes are proposed to be tetrahedral geometry. The macrocyclic Co(II) complexes are 1:2 electrolytes as shown by their molar conductivities (ΛM) in DMF (dimethyl formamide) at 10?3 M. The structure of Co(II) complexes is proposed from elemental analysis, Ft-IR, UV–visible spectra, magnetic susceptibility, molar conductivity measurements and mass spectra. Electrochemical and thin-layer spectroelectrochemical studies of the complexes were comparatively studied in the same experimental conditions. The electrochemical results revealed that all complexes displayed irreversible one reduction processes and their cathodic peak potential values (E pc) were observed in around of ?1.14 to 0.95 V. It was also seen that [CoL1][NO3]2 · 3H2O and [CoL2][NO3]2 · 4H2O exhibited one cathodic wave without corresponding anodic wave but, [CoL3][NO3]2 · 4H2O and [CoL4][NO3]2 · 2H2O showed one cathodic wave with corresponding anodic wave, probably due to the presence of different ligand nature even if the complexes have the same N2O2 donor set. In view of spectroelectrochemical studies [CoL3][NO3]2 · 4H2O showed distinctive spectral changes in which the intensity of the band (λ = at 316 nm, assigned to n → π* transitions) decreased and a new broad band in a low intensity about 391 nm appeared as a result of the reduction process based on the cobalt center in the complex.  相似文献   

18.
《中国化学快报》2020,31(7):1961-1965
Herein, we prepared novel three-dimensional (3D) gear-shaped Co3O4@C (Co3O4 modified by amorphous carbon) and sheet-like SnO2/CC (SnO2 grow on the carbon cloth) as anode and cathode to achieve efficient removal of 4-nitrophenol (4-NP) in the presence of peroxymonosulfate (PMS) and simultaneous electrocatalytic reduction of CO2, respectively. In this process, 4-NP was mineralized into CO2 by the Co3O4@C, and the generated CO2 was reduced into HCOOH by the sheet-like SnO2/CC cathode. Compared with the pure Co0.5 (Co3O4 was prepared using 0.5 g urea) with PMS (30 mg, 0.5 g/L), the degradation efficiency of 4-NP (60 mL, 10 mg/L) increased from 74.5%–85.1% in 60 min using the Co0.5 modified by amorphous carbon (Co0.5@C). Furthermore, when the voltage of 1.0 V was added in the anodic system of Co0.5@C with PMS (30 mg, 0.5 g/L), the degradation efficiency of 4-NP increased from 85.1%–99.1% when Pt was used as cathode. In the experiments of 4-NP degradation coupled with simultaneous electrocatalytic CO2 reduction, the degradation efficiency of 4-NP was 99.0% in the anodic system of Co0.5@C with addition of PMS (30 mg, 0.5 g/L), while the Faraday efficiency (FE) of HCOOH was 24.1 % at voltage of −1.3 V using the SnO2/CC as cathode. The results showed that the anode of Co3O4 modified by amorphous carbon can markedly improve the degradation efficiency of 4-NP, while the cathode of SnO2/CC can greatly improve the FE and selectivity of CO2 reduction to HCOOH and the stability of cathode. Finally, the promotion mechanism was proposed to explain the degradation of organic pollutants and reduction of CO2 into HCOOH in the process of electrocatalysis coupled with advanced oxidation processes (AOPs) and simultaneous CO2 reduction.  相似文献   

19.
Hydrogen peroxide (H2O2) and formate are important chemicals used in various chemical manufacturing industries. One promising approach for the simultaneous production of these chemicals is coupling anodic two-electron water oxidation with cathodic CO2 reduction in an electrolyzer using nonprecious bifunctional electrocatalysts. Herein, we report an innovative hybrid electrosynthesis strategy using Zn-doped SnO2 (Zn/SnO2) nanodots as bifunctional redox electrocatalysts to achieve Faradaic efficiencies of 80.6 % and 92.2 % for H2O2 and formate coproduction, respectively, along with excellent stability for at least 60 h at a current density of ≈150 mA cm−2. Through a combination of physicochemical characterizations, including operando attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), isotope labeling mass spectrometry (MS)/1H NMR and quasi-in situ electron paramagnetic resonance (EPR), with density functional theory (DFT) calculations, we discovered that the Zn dopant facilitates the coupling of *OH intermediates to promote H2O2 production and optimizes the adsorption of *OCHO intermediates to accelerate formate formation. Our findings offer new insights into designing more efficient bifunctional electrocatalyst-based pair-electrosynthesis system for the coproduction of H2O2 and formate feedstocks.  相似文献   

20.
Polysulfone (PSF) and sulfonated polysulfone (SPSF) were synthesized and characterized by IR spectrum. Sm1.5Sr0.5NiO4 (SSN) and Ni‐Ce0.8Sm0.2O2?δ (Ni‐SDC, Ni‐samarium doped ceria) were prepared and characterized by X‐ray diffraction (XRD) and scanning electron microscopy (SEM). Ammonia was synthesized from wet hydrogen and dry nitrogen with applied voltage, using SSN as cathode, Ni‐SDC as anode, Nafion and SPSF as proton membrane respectively. The performances of Nafion and SPSF membranes in ammonia synthesis were investigated and compared at atmospheric pressure and low temperature (25–100°C). The results demonstrated that the proton conducting performances of Nafion and SPSF membranes were similar and the highest rates of evolution of ammonia were up to 1.05×10?8 and 1.03×10?8 mol·cm?2·s?1 respectively at 80°C and 2.5 V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号