首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the expected value of various graph parameters associated with the minimum rank of a graph, including minimum rank/maximum nullity and related Colin de Verdière-type parameters. Let G(v,p) denote the usual Erd?s-Rényi random graph on v vertices with edge probability p. We obtain bounds for the expected value of the random variables mr(G(v,p)), M(G(v,p)), ν(G(v,p)) and ξ(G(v,p)), which yield bounds on the average values of these parameters over all labeled graphs of order v.  相似文献   

2.
For a rooted graph G, let EVb(G;p) be the expected number of vertices reachable from the root when each edge has an independent probability p of operating successfully. We determine the expected value of EVb(G;p) for random trees, and include a connection to unrooted trees. We also consider rooted digraphs, computing the expected value of a random orientation of a rooted graph G in terms of EVb(G;p). We consider optimal location of the root vertex for the class of grid graphs, and we also briefly discuss a polynomial that incorporates vertex failure.  相似文献   

3.
A random graph G(n, p) is said to obey the (monadic) zero–one k-law if, for any monadic formula of quantifier depth k, the probability that it is true for the random graph tends to either zero or one. In this paper, following J. Spencer and S. Shelah, we consider the case p = n . It is proved that the least k for which there are infinitely many α such that a random graph does not obey the zero–one k-law is equal to 4.  相似文献   

4.
For two multivariate normal populations with unequal covariance matrices, a procedure is developed for testing the equality of the mean vectors based on the concept of generalized p-values. The generalized p-values we have developed are functions of the sufficient statistics. The computation of the generalized p-values is discussed and illustrated with an example. Numerical results show that one of our generalized p-value test has a type I error probability not exceeding the nominal level. A formula involving only a finite number of chi-square random variables is provided for computing this generalized p-value. The formula is useful in a Bayesian solution as well. The problem of constructing a confidence region for the difference between the mean vectors is also addressed using the concept of generalized confidence regions. Finally, using the generalized p-value approach, a solution is developed for the heteroscedastic MANOVA problem.  相似文献   

5.
6.
In this work we show that with high probability the chromatic number of a graph sampled from the random regular graph model Gn,d for d=o(n1/5) is concentrated in two consecutive values, thus extending a previous result of Achlioptas and Moore. This concentration phenomena is very similar to that of the binomial random graph model G(n,p) with . Our proof is largely based on ideas of Alon and Krivelevich who proved this two-point concentration result for G(n,p) for p=nδ where δ>1/2. The main tool used to derive such a result is a careful analysis of the distribution of edges in Gn,d, relying both on the switching technique and on bounding the probability of exponentially small events in the configuration model.  相似文献   

7.
A graph G is said to be an integral sum graph if its nodes can be given a labeling f with distinct integers, so that for any two distinct nodes u and v of G, uv is an edge of G if and only if f(u)+f(v) = f(w) for some node w in G. A node of G is called a saturated node if it is adjacent to every other node of G. We show that any integral sum graph which is not K3 has at most two saturated nodes. We determine the structure for all integral sum graphs with exactly two saturated nodes, and give an upper bound for the number of edges of a connected integral sum graph with no saturated nodes. We introduce a method of identification on constructing new connected integral sum graphs from given integral sum graphs with a saturated node. Moreover, we show that every graph is an induced subgraph of a connected integral sum graph. Miscellaneous relative results are also presented.  相似文献   

8.
A graph G is said to be an integral sum graph if its nodes can be given a labeling f with distinct integers, so that for any two distinct nodes u and v of G, uv is an edge of G if and only if f(u)+f(v)=f(w) for some node w in G. A node of G is called a saturated node if it is adjacent to every other node of G. We show that any integral sum graph which is not K3 has at most two saturated nodes. We determine the structure for all integral sum graphs with exactly two saturated nodes, and give an upper bound for the number of edges of a connected integral sum graph with no saturated nodes. We introduce a method of identification on constructing new connected integral sum graphs from given integral sum graphs with a saturated node. Moreover, we show that every graph is an induced subgraph of a connected integral sum graph. Miscellaneous related results are also presented.  相似文献   

9.
We consider homomorphism properties of a random graph G(n,p), where p is a function of n. A core H is great if for all eE(H), there is some homomorphism from He to H that is not onto. Great cores arise in the study of uniquely H-colourable graphs, where two inequivalent definitions arise for general cores H. For a large range of p, we prove that with probability tending to 1 as n, GG(n,p) is a core that is not great. Further, we give a construction of infinitely many non-great cores where the two definitions of uniquely H-colourable coincide.  相似文献   

10.
Let p be an edge of the graph G. An orientation of G is p-coherent if the set of directed circuits is exactly the set of circuits containing the edge p. Theorem: A matroidally connected graph G is a series-parallel network if and only if for every edge p of G, there exists a p-coherent orientation.  相似文献   

11.
A graph G of order p ? 3 is called n-hamiltonian, 0 ? n ? p ? 3, if the removal of any m vertices, 0 ? m ? n, results in a hamiltonian graph. A graph G of order p ? 3 is defined to be n-hamiltonian, ?p ? n ? 1, if there exists ?n or fewer pairwise disjoint paths in G which collectively span G. Various conditions in terms of n and the degrees of the vertices of a graph are shown to be sufficient for the graph to be n-hamiltonian for all possible values of n. It is also shown that if G is a graph of order p ? 3 and K(G) ? β(G) + n (?p ? n ? p ? 3), then G is n-hamiltonian.  相似文献   

12.
The NP‐hard graph bisection problem is to partition the nodes of an undirected graph into two equal‐sized groups so as to minimize the number of edges that cross the partition. The more general graph l‐partition problem is to partition the nodes of an undirected graph into l equal‐sized groups so as to minimize the total number of edges that cross between groups. We present a simple, linear‐time algorithm for the graph l‐partition problem and we analyze it on a random “planted l‐partition” model. In this model, the n nodes of a graph are partitioned into l groups, each of size n/l; two nodes in the same group are connected by an edge with some probability p, and two nodes in different groups are connected by an edge with some probability r<p. We show that if prn−1/2+ϵ for some constant ϵ, then the algorithm finds the optimal partition with probability 1− exp(−nΘ(ε)). © 2001 John Wiley & Sons, Inc. Random Struct. Alg., 18: 116–140, 2001  相似文献   

13.
For a given graph G, each partition of the vertices has a modularity score, with higher values indicating that the partition better captures community structure in G. The modularity q?(G) of the graph G is defined to be the maximum over all vertex partitions of the modularity score, and satisfies 0 ≤ q?(G)<1. Modularity is at the heart of the most popular algorithms for community detection. We investigate the behaviour of the modularity of the Erd?s‐Rényi random graph Gn,p with n vertices and edge‐probability p. Two key findings are that the modularity is 1+o(1) with high probability (whp) for np up to 1+o(1) and no further; and when np ≥ 1 and p is bounded below 1, it has order (np)?1/2 whp, in accord with a conjecture by Reichardt and Bornholdt in 2006. We also show that the modularity of a graph is robust to changes in a few edges, in contrast to the sensitivity of optimal vertex partitions.  相似文献   

14.
Inspired by coalescent theory in biology, we introduce a stochastic model called “multi-person simple random walks” or “coalescent random walks” on a graph G. There are any finite number of persons distributed randomly at the vertices of G. In each step of this discrete time Markov chain, we randomly pick up a person and move it to a random adjacent vertex. To study this model, we introduce the tensor powers of graphs and the tensor products of Markov processes. Then the coalescent random walk on graph G becomes the simple random walk on a tensor power of G. We give estimates of expected number of steps for these persons to meet all together at a specific vertex. For regular graphs, our estimates are exact.  相似文献   

15.
We study the space complexity of refuting unsatisfiable random k-CNFs in the Resolution proof system. We prove that for Δ ≥ 1 and any ϵ > 0, with high probability a random k-CNF over n variables and Δn clauses requires resolution clause space of Ω(n1+ϵ). For constant Δ, this gives us linear, optimal, lower bounds on the clause space. One consequence of this lower bound is the first lower bound for size of treelike resolution refutations of random 3-CNFs with clause density Δ ≫ n. This bound is nearly tight. Specifically, we show that with high probability, a random 3-CNF with Δn clauses requires treelike refutation size of exp(Ω(n1+ϵ)), for any ϵ > 0. Our space lower bound is the consequence of three main contributions: (1) We introduce a 2-player Matching Game on bipartite graphs G to prove that there are no perfect matchings in G. (2) We reduce lower bounds for the clause space of a formula F in Resolution to lower bounds for the complexity of the game played on the bipartite graph G(F) associated with F. (3) We prove that the complexity of the game is large whenever G is an expander graph. Finally, a simple probabilistic analysis shows that for a random formula F, with high probability G(F) is an expander. We also extend our result to the case of G-PHP, a generalization of the Pigeonhole principle based on bipartite graphs G. © 2003 Wiley Periodicals, Inc. Random Struct. Alg., 23: 92–109, 2003  相似文献   

16.
Given a connected finite graph Γ with a fixed base point O and some graph G with a based point we study random 1-Lipschitz maps of a scaled Γ into G. We are mostly interested in the case where G is a Cayley graph of some finitely generated group, where the construction does not depend on the choice of base points. A particular case of Γ being a graph on two vertices and one edge corresponds to the random walk on G, and the case where Γ is a graph on two vertices and two edges joining them corresponds to Brownian bridge in G. We show, that unlike in the case ${G=\mathbb Z^d}$ , the asymptotic behavior of a random scaled mapping of Γ into G may differ significantly from the asymptotic behavior of random walks or random loops in G. In particular, we show that this occurs when G is a free non-Abelian group. Also we consider the case when G is a wreath product of ${\mathbb Z}$ with a finite group. To treat this case we prove new estimates for transition probabilities in such wreath products. For any group G generated by a finite set S we define a functor E from category of finite connected graphs to the category of equivalence relations on such graphs. Given a finite connected graph Γ, the value E G,S (Γ) can be viewed as an asymptotic invariant of G.  相似文献   

17.
We consider the so-called distance graph G(n, 3, 1), whose vertices can be identified with three-element subsets of the set {1, 2,..., n}, two vertices being joined by an edge if and only if the corresponding subsets have exactly one common element. We study some properties of random subgraphs of G(n, 3, 1) in the Erd?s–Rényi model, in which each edge is included in the subgraph with some given probability p independently of the other edges. We find the asymptotics of the independence number of a random subgraph of G(n, 3, 1).  相似文献   

18.
The goal of this paper is to establish a connection between two classical models of random graphs: the random graph G(n,p) and the random regular graph Gd(n). This connection appears to be very useful in deriving properties of one model from the other and explains why many graph invariants are universal. In particular, one obtains one-line proofs of several highly non-trivial and recent results on Gd(n).  相似文献   

19.
Pyaderkin  M. M. 《Mathematical Notes》2019,106(1-2):274-285

This paper considers the so-called distance graph G(n, r, s);its vertices can be identified with the r-element subsets of the set {1, 2,…,n}, and two vertices are joined by an edge if the size of the intersection of the corresponding subsets equals s. Note that, in the case s = 0, such graphs are known as Kneser graphs. These graphs are closely related to the Erd?s-Ko-Rado problem; they also play an important role in combinatorial geometry and coding theory.

We study properties of random subgraphs of the graph G(n, r, s) in the Erd?s-Rényi model, in which each edge is included in the subgraph with a certain fixed probability p independently of the other edges. It is known that if r > 2s + 1, then, for p = 1/2, the size of an independent set is asymptotically stable in the sense that the independence number of a random subgraph is asymptotically equal to that of the initial graph G(n, r, s). This gives rise to the question of how small p must be for asymptotic stability to cease. The main result of this paper is the answer to this question.

  相似文献   

20.
The link of a vertex v of a graph G is the subgraph induced by all vertices adjacent to v. If all the links of G are isomorphic to L, then G has constant link and L is called a link graph. We investigate the trees of order p≤9 to see which are link graphs. Group theoretic methods are used to obtain constructions of graphs G with constant link L for certain trees L. Necessary conditions are derived for the existence of a graph having a given graph L as its constant link. These conditions show that many trees are not link graphs. An example is given to show that a connected graph with constant link need not be point symmetric.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号