首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The focus of this paper is on the analytical buckling solutions of piezoelectric cylindrical nanoshells under the combined compressive loads and external voltages. To capture the small-scale characteristics of the nanostructures, the constitutive equations with the coupled nonlocal and surface effects are adopted within the framework of Reddy's higher-order shell theory. The governing equations involving the displacements and induced piezoelectric field are solved by employing the separation of variables. The derived accurate solutions conclude that bucking critical stresses should go down rapidly while the nonlocal effects reach a certain level. With the enhancing surface effects, the stability of piezoelectric cylindrical nanoshells can be improved significantly. Meanwhile, the induced electric field also plays an important role in elevating the buckling critical stresses. For the nanoshells with remarkable nonlocal effects, boundary conditions, shell length and radius have little influence on the buckling solutions. The detailed effects of the boundary conditions, geometric parameters, material properties and applied voltages are discussed.  相似文献   

2.
In the present study, a nonlocal continuum model based on the Eringen’s theory is developed for vibration analysis of orthotropic nano-plates with arbitrary variation in thickness. Variational principle and Ritz functions are employed to calculate the size dependent natural frequencies of non-uniform nano-plates on the basis of nonlocal classical plate theory (NCLPT). The Ritz functions eliminate the need for mesh generation and thus large degrees of freedom arising in discretization methods such as finite element (FE). Effect of thickness variation on natural frequencies is examined for different nonlocal parameters, mode numbers, geometries and boundary conditions. It is found that thickness variation accompanying small scale effect has a noticeable effect on natural frequencies of non-uniform plates at nano scale. Also a comparison with finite element solution is performed to show the ability of the Ritz functions in fast converging to the exact results. It is anticipated that presented results can be used as a helpful source in vibration design and frequency optimization of non-uniform small scaled plates.  相似文献   

3.
Transverse dynamical behaviors of axially moving nanoplates which could be used to model the graphene nanosheets or other plate-like nanostructures with axial motion are examined based on the nonlocal elasticity theory. The Hamilton's principle is employed to derive the multivariable coupling partial differential equations governing the transverse motion of the axially moving nanoplates. Subsequently, the equations are transformed into a set of ordinary differential equations by the method of separation of variables. The effects of dimensionless small-scale parameter, axial speed and boundary conditions on the natural frequencies in sub-critical region are discussed by the method of complex mode. Then the Galerkin method is employed to analyze the effects of small-scale parameter on divergent instability and coupled-mode flutter in super-critical region. It is shown that the existence of small-scale parameter contributes to strengthen the stability in the super-critical region, but the stability of the sub-critical region is weakened. The regions of divergent instability and coupled-mode flutter decrease even disappear with an increase in the small-scale parameter. The natural frequencies in sub-critical region show different tendencies with different boundary effects, while the natural frequencies in super-critical region keep constants with the increase of axial speed.  相似文献   

4.
Isogeometric analysis (IGA) with the polynomial splines over hierarchical T-meshes (PHT-splines) is used to provide an efficient tool capable of carrying out the vibration and buckling analyses of the stiffened laminates. IGA offers increased accuracy and efficiency using the PHT-splines, which represent exact geometry of the stiffeners and make the refinement more flexible near the areas where the stiffeners and composite plate are connected. Numerical examples are given to validate the correctness and superiority of the present method, comparing with the results from existing literatures and commercial softwares. Besides, the influences of the orientation, curvature, location and cross-section size of the stiffeners on the natural frequencies and buckling loads are also studied. The results show that the optimization of the shape and size of the stiffeners has an important effect on the vibration and buckling characteristics of stiffened laminates.  相似文献   

5.
Although most of the plates in steel structures are rectangular, some triangular ones do occur. The number of available solutions for triangular plate buckling coefficients is small, and restricted to special triangle geometries and loading ratios. In this paper the range of available solutions is extended by the use of a plate bending finite element devised by Irons. A range of plate parameters is considered and results are tabulated and plotted. The program is available for the use of designers who wish to consider other values of parameters. The use of the procedures described in the Merrison report can extend these results to deal with the influence of initial imperfections and weld effects.  相似文献   

6.
In this paper, a simple and efficient mixed Ritz-differential quadrature (DQ) method is presented for free vibration and buckling analysis of orthotropic rectangular plates. The mixed scheme combines the simplicity of the Ritz method and high accuracy and efficiency of the DQ method. The accuracy of the proposed method is demonstrated by comparing the calculated results with those available in the literature. It is shown that highly accurate results can be obtained using a small number of Ritz terms and DQ sample points. The proposed method is suitable for the problem considered due to its simplicity and potential for further development.  相似文献   

7.
A finite element model is developed to study the large-amplitude free vibrations of generally-layered laminated composite beams. The Poisson effect, which is often neglected, is included in the laminated beam constitutive equation. The large deformation is accounted for by using von Karman strains and the transverse shear deformation is incorporated using a higher order theory. The beam element has eight degrees of freedom with the inplane displacement, transverse displacement, bending slope and bending rotation as the variables at each node. The direct iteration method is used to solve the nonlinear equations which are evaluated at the point of reversal of motion. The influence of boundary conditions, beam geometries, Poisson effect, and ply orientations on the nonlinear frequencies and mode shapes are demonstrated.  相似文献   

8.
A solution for the elastic and inelastic local buckling of flat rectangular plates with centerline boundary conditions subjected to non-uniform in-plane compression and shear stress is presented. The loaded edges are simply supported, the longitudinal edges may have any boundary conditions and the centerline is simply supported with a variable rotational stiffness. The Galerkin method, an effective method for solving differential equations, is applied to establish an eigenvalue problem. In order to obtain plate buckling coefficients, combined trigonometric and polynomial functions that satisfy the boundary conditions are used. The method is programmed, and several numerical examples including elastic and inelastic local buckling, are presented to illustrate the scope and efficacy of the procedure. The variation of buckling coefficients with aspect ratio is presented for various stress gradient ratios. The solution is applicable to stiffened plates and the flange of the I-shaped beams that are subjected to biaxial bending or combined flexure and torsion and shear stresses, and is important to estimate the reduction in elastic buckling capacity due to stress gradient.  相似文献   

9.
Familiar linear elastic and viscoelastic beam equations (Euler-Bernoulli, Rayleigh, Kelvin-Voigt, Timoshenko, and Shear Diffusion) and boundary conditions are derived from a nonlinear theory of large motions rather than the usual variational techniques. Also included is a fairly detailed derivation of the nonlinear theory and a careful discussion of the hypotheses.This work has been partially supported by the Office of Naval Research under grant number N00014-88-K0417 and by the National Science Foundation under grant number DMS-8801412.  相似文献   

10.
A nonlinear model is developed for the vibration of a single-walled carbon nanotube (SWCNT) based on Eringen’s nonlocal elasticity theory. The nanotube is assumed to be embedded in a Pasternak-type foundation with simply supported boundary conditions. The nonlinear equation of motion is solved by the energy balance method (EBM) to obtain a sufficiently accurate flow-induced frequency. It is demonstrated that the nonlinearity of the model makes a reasonable change to the frequency at high flow velocity and for the large deformations. Furthermore, the deviation of the frequency from the linear frequency will be exaggerated with an increase in the nonlocal parameter and a decrease of the Pasternak parameters. Ultimately, the results show that the nonlinearity of the model can be effectively tuned by applying axial tension to the nanotube.  相似文献   

11.
In this paper, we investigate local and nonlocal reductions of a discrete negative order Ablowitz–Kaup–Newell–Segur equation. By the bilinearization reduction method, we construct exact solutions in double Casoratian form to the reduced nonlocal discrete sine-Gordon equations. Then, nonlocal semidiscrete sine-Gordon equations and their solutions are obtained through the continuum limits. The dynamics of soliton solutions are analyzed and illustrated by asymptotic analysis. The research ideas and methods in this paper can be generalized to other nonlocal discrete integrable systems.  相似文献   

12.
In the present paper, fundamental frequency optimization of symmetrically laminated composite plates is studied using the combination of Elitist-Genetic algorithm (E-GA) and finite strip method (FSM). The design variables are the number of layers, the fiber orientation angles, edge conditions and plate length/width ratios. The classical laminated plate theory is used to calculate the natural frequencies and the fitness function is computed with a semi-analytical finite strip method which has been developed on the basis of full energy methods. To improve the speed of the optimization process, the elitist strategy is used in the Genetic algorithm. The performance of the E-GA is also compared with the simple genetic algorithm and shows the good efficiency of the E-GA algorithm. A multi-objective optimization strategy for optimal stacking sequence of laminated box structure is also presented, with respect to the first natural frequency and critical buckling load, using the weighted summation method to demonstrate the effectiveness of the E-GA. Results are corroborated by comparing with other optimum solutions available in the literature, wherever possible.  相似文献   

13.
Analytical solutions for bending, buckling, and vibration analyses of thick rectangular plates with various boundary conditions are presented using two variable refined plate theory. The theory accounts for parabolic variation of transverse shear stress through the thickness of the plate without using shear correction factor. In addition, it contains only two unknowns and has strong similarities with the classical plate theory in many aspects such as equations of motion, boundary conditions, and stress resultant expressions. Equations of motion are derived from Hamilton’s principle. Closed-form solutions of deflection, buckling load, and natural frequency are obtained for rectangular plates with two opposite edges simply supported and the other two edges having arbitrary boundary conditions. Comparison studies are presented to verify the validity of present solutions. It is found that the deflection, stress, buckling load, and natural frequency obtained by the present theory match well with those obtained by the first-order and third-order shear deformation theories.  相似文献   

14.
A time-domain approach for the simulation of elastic waves in heterogeneous soil domains is presented. It is based on modelling both near and far field by the scaled boundary finite element method (SBFEM). The SBFEM facilitates the use of a structured mesh in the near field region without the need to circumvent hanging nodes. The quadtree mesh is obtained automatically from image data. Radiation damping in the far field is modelled accurately by means of a displacement unit-impulse-response-based formulation. An example analysis of wave radiation by an alluvial basin illustrates the potential of the proposed methodology. (© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Discrete singular convolution (DSC) method has been proposed to obtain the frequencies and buckling loads of composite plates. By using geometric transformation, the straight-sided quadrilateral domain is mapped into a square domain in the computational space using a four-node element. Plates having different geometries such as rectangular, skew, trapezoidal and rhombic plates are presented. The obtained results are compared with those of other numerical methods. Numerical results indicate that the DSC is a simple, accurate and reliable algorithm for vibration and buckling analyses of composite plates.  相似文献   

16.
This paper investigates the torsional vibration of single-walled carbon nanotubes (SWCNTs) using a new approach based on doublet mechanics (DM) incorporating explicitly scale parameter and chiral effects. A fourth-order partial differential equation that governs the torsional vibration of nanotubes is derived. Using DM, an explicit equation for the natural frequency in terms of geometrical and mechanical property of CNTs is obtained for both the Zigzag and Armchair nanotube for the torsional vibration mode. It is shown that chiral effects along with the scale parameter play a significant role in the vibration behavior of SWCNTs in torsional vibration mode. Such effects decrease the natural frequency obtained by DM compared to the classical continuum mechanics and nonlocal theory predictions. However, with increase in the length and/or the radius of the tube, the effect of the chiral and scale parameter on the natural frequency decreases.  相似文献   

17.
This paper presents the comparison of physical spline finite element method (PSFEM), in which differential equations are incorporated into interpolations of basic elements, with least-squares finite element method (LSFEM) and mixed Galerkin finite element method (MGFEM) on the numerical solution of one dimensional Helmholtz equation applied to an acoustic scattering problem. Firstly, all three methods are explained in detail and then it is shown that PSFEM reaches higher precision in a shorter time with fewer nodes than the other methods. It is also observed that this method is well suited for high frequency acoustic problems. Consequently, the results of PSFEM point out better efficiency in terms of number of unknowns and accuracy level.  相似文献   

18.
This research describes spectral finite element formulation for vibration analysis of rectangular symmetric cross-ply laminated composite plates of Levy-type based on classical lamination plate theory (CLPT). Formulation based on SFEM includes partial differential equations of motion, spectral displacement field, dynamic shape functions, and spectral element stiffness matrix (SESM). In this paper, vibration analysis of composite plate is investigated in two sections: free vibrations and forced vibrations. In free vibrations, natural frequencies are calculated for different Young’s moduli ratios and boundary conditions. In forced vibrations, plate vibrations are investigated under high-frequency concentrated impulsive loads. The resulting responses due to spectral element formulation are compared with those of (time-domain) finite element and analytical formulations, whenever available. The results demonstrate the superiority of SFEM with respect to FEM, in reducing computational burden, simultaneously increasing numerical accuracy, specifically for excitations of high-frequency content. By reducing the time duration of impulsive loads, and consequently increasing the modal contribution of higher modes in the transient response of plate, the accuracy of FEM responses decreases substantially accompanied with a high volume of computations, while the accuracy of the SFEM response results is very high and simultaneously, with a low computational burden. Practically, SFEM follows very closely exact analytical solutions.  相似文献   

19.
In this paper, to consider all surface effects including surface elasticity, surface stress, and surface density, on the nonlinear free vibration analysis of simply-supported functionally graded Euler–Bernoulli nanobeams using nonlocal elasticity theory, the balance conditions between FG nanobeam bulk and its surfaces are considered to be satisfied assuming a cubic variation for the component of the normal stress through the FG nanobeam thickness. The nonlinear governing equation includes the von Kármán geometric nonlinearity and the material properties change continuously through the thickness of the FG nanobeam according to a power-law distribution of the volume fraction of the constituents. The multiple scale method is employed as an analytical solution for the nonlinear governing equation to obtain the nonlinear natural frequencies of FG nanobeams. The effect of the gradient index, the nanobeam length, thickness to length ratio, mode number, amplitude of deflection to radius of gyration ratio and nonlocal parameter on the frequency ratios of FG nanobeams is investigated.  相似文献   

20.
In this paper, the size-effects in the torsional and axial response of microtubules by using the nonlocal continuum rod model is investigated. To this end, continuous and discrete rod models are performed for modeling of microtubules. A simple finite element procedure is used for modeling and solution of nonlocal discrete system equation for microtubules. The influence of the small length scale on the vibration frequencies is examined both torsional and axial vibration cases. Some parametric results are also presented for examination of the accuracy and performances of discrete and continuous models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号