首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The conservative number of a graph G is the minimum positive integer M, such that G admits an orientation and a labeling of its edges by distinct integers in {1,2,,M}, such that at each vertex of degree at least three, the sum of the labels on the in-coming edges is equal to the sum of the labels on the out-going edges. A graph is conservative if M=|E(G)|. It is worth noting that determining whether certain biregular graphs are conservative is equivalent to find integer Heffter arrays.In this work we show that the conservative number of a galaxy (a disjoint union of stars) of size M is M for M0, 3(mod4), and M+1 otherwise. Consequently, given positive integers m1, m2, …, mn with mi3 for 1in, we construct a cyclic (m1,m2,,mn)-cycle system of infinitely many circulant graphs, generalizing a result of Bryant, Gavlas and Ling (2003). In particular, it allows us to construct a cyclic (m1,m2,,mn)-cycle system of the complete graph K2M+1, where M=i=1nmi. Also, we prove necessary and sufficient conditions for the existence of a cyclic (m1,m2,,mn)-cycle system of K2M+2?F, where F is a 1-factor. Furthermore, we give a sufficient condition for a subset of Zv?{0} to be sequenceable.  相似文献   

3.
A magic square M in which the entries consist of consecutive integers from 1,2,,n2 is said to be self-complementary of ordern if the resulting square obtained from M by replacing each entry i by n2+1?i is equivalent to M (under rotation or reflection). We present a new construction for self-complementary magic squares of order n for each n4, where n is a multiple of 4.  相似文献   

4.
5.
Generalizing the quasi-cyclic codes of index 113 introduced by Fan et al., we study a more general class of quasi-cyclic codes of fractional index generated by pairs of polynomials. The parity check polynomial and encoder of these codes are obtained. The asymptotic behaviours of the rates and relative distances of this class of codes are studied by using a probabilistic method. We prove that, for any positive real number δ such that the asymptotic GV-bound at k+l2δ is greater than 12, the relative distance of the code is convergent to δ, while the rate is convergent to 1k+l. As a result, quasi-cyclic codes of fractional index are asymptotically good.  相似文献   

6.
7.
8.
9.
For a martingale M starting at x with final variance σ2, and an interval (a,b), let Δ=b?aσ be the normalized length of the interval and let δ=|x?a|σ be the normalized distance from the initial point to the lower endpoint of the interval. The expected number of upcrossings of (a,b) by M is at most 1+δ2?δ2Δ if Δ21+δ2 and at most 11+(Δ+δ)2 otherwise. Both bounds are sharp, attained by Standard Brownian Motion stopped at appropriate stopping times. Both bounds also attain the Doob upper bound on the expected number of upcrossings of (a,b) for submartingales with the corresponding final distribution. Each of these two bounds is at most σ2(b?a), with equality in the first bound for δ=0. The upper bound σ2 on the length covered by M during upcrossings of an interval restricts the possible variability of a martingale in terms of its final variance. This is in the same spirit as the Dubins & Schwarz sharp upper bound σ on the expected maximum of M above x, the Dubins & Schwarz sharp upper bound σ2 on the expected maximal distance of M from x, and the Dubins, Gilat & Meilijson sharp upper bound σ3 on the expected diameter of M.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
Let G be a finite group, written multiplicatively. The Davenport constant of G is the smallest positive integer D(G) such that every sequence of G with D(G) elements has a non-empty subsequence with product 1. Let D2n be the Dihedral Group of order 2n and Q4n be the Dicyclic Group of order 4n. Zhuang and Gao (2005) showed that D(D2n)=n+1 and Bass (2007) showed that D(Q4n)=2n+1. In this paper, we give explicit characterizations of all sequences S of G such that |S|=D(G)?1 and S is free of subsequences whose product is 1, where G is equal to D2n or Q4n for some n.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号