首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于分数阶微积分正则化的图像处理   总被引:1,自引:0,他引:1  
陈云  郭宝裕  马祥园 《计算数学》2017,39(4):393-406
全变分正则化方法已被广泛地应用于图像处理,利用此方法可以较好地去除噪声,并保持图像的边缘特征,但得到的优化解会产生"阶梯"效应.为了克服这一缺点,本文通过分数阶微积分正则化方法,建立了一个新的图像处理模型.为了克服此模型中非光滑项对求解带来的困难,本文研究了基于不动点方程的迫近梯度算法.最后,本文利用提出的模型与算法进行了图像去噪、图像去模糊与图像超分辨率实验,实验结果表明分数阶微积分正则化方法能较好的保留图像纹理等细节信息.  相似文献   

2.
Images captured by image acquisition systems using photon-counting devices such as astronomical imaging, positron emission tomography and confocal microscopy imaging, are often contaminated by Poisson noise. Total variation (TV) regularization, which is a classic regularization technique in image restoration, is well-known for recovering sharp edges of an image. Since the regularization parameter is important for a good recovery, Chen and Cheng (2012) proposed an effective TV-based Poissonian image deblurring model with a spatially adapted regularization parameter. However, it has drawbacks since the TV regularization produces staircase artifacts. In this paper, in order to remedy the shortcoming of TV of their model, we introduce an extra high-order total variation (HTV) regularization term. Furthermore, to balance the trade-off between edges and the smooth regions in the images, we also incorporate a weighting parameter to discriminate the TV and the HTV penalty. The proposed model is solved by an iterative algorithm under the framework of the well-known alternating direction method of multipliers. Our numerical results demonstrate the effectiveness and efficiency of the proposed method, in terms of signal-to-noise ratio (SNR) and relative error (RelRrr).  相似文献   

3.
Iterative regularization multigrid methods have been successfully applied to signal/image deblurring problems. When zero-Dirichlet boundary conditions are imposed the deblurring matrix has a Toeplitz structure and it is potentially full. A crucial task of a multilevel strategy is to preserve the Toeplitz structure at the coarse levels which can be exploited to obtain fast computations. The smoother has to be an iterative regularization method. The grid transfer operator should preserve the regularization property of the smoother. This paper improves the iterative multigrid method proposed in [11] introducing a wavelet soft-thresholding denoising post-smoother. Such post-smoother avoids the noise amplification that is the cause of the semi-convergence of iterative regularization methods and reduces ringing effects. The resulting iterative multigrid regularization method stabilizes the iterations so that the imprecise (over) estimate of the stopping iteration does not have a deleterious effect on the computed solution. Numerical examples of signal and image deblurring problems confirm the effectiveness of the proposed method.  相似文献   

4.
In this paper, we study a deblurring algorithm for distorted images by random impulse response. We propose and develop a convex optimization model to recover the underlying image and the blurring function simultaneously. The objective function is composed of 3 terms: the data‐fitting term between the observed image and the product of the estimated blurring function and the estimated image, the squared difference between the estimated blurring function and its mean, and the total variation regularization term for the estimated image. We theoretically show that under some mild conditions, the resulting objective function can be convex in which the global minimum value is unique. The numerical results confirm that the peak‐to‐signal‐noise‐ratio and structural similarity of the restored images by the proposed algorithm are the best when the proposed objective function is convex. We also present a proximal alternating minimization scheme to solve the resulting minimization problem. Numerical examples are presented to demonstrate the effectiveness of the proposed model and the efficiency of the numerical scheme.  相似文献   

5.
Speckle noise contamination is a common issue in ultrasound imaging system. Due to the edge-preserving feature, total variation (TV) regularization-based techniques have been extensively utilized for speckle noise removal. However, TV regularization sometimes causes staircase artifacts as it favors solutions that are piecewise constant. In this paper, we propose a new model to overcome this deficiency. In this model, the regularization term is represented by a combination of total variation and high-order total variation, while the data fidelity term is depicted by a generalized Kullback-Leibler divergence. The proposed model can be efficiently solved by alternating direction method with multipliers (ADMM). Compared with some state-of-the-art methods, the proposed method achieves higher quality in terms of the peak signal to noise ratio (PSNR) and the structural similarity index (SSIM). Numerical experiments demonstrate that our method can remove speckle noise efficiently while suppress staircase effects on both synthetic images and real ultrasound images.  相似文献   

6.
Anisotropic Total Variation Filtering   总被引:1,自引:0,他引:1  
Total variation regularization and anisotropic filtering have been established as standard methods for image denoising because of their ability to detect and keep prominent edges in the data. Both methods, however, introduce artifacts: In the case of anisotropic filtering, the preservation of edges comes at the cost of the creation of additional structures out of noise; total variation regularization, on the other hand, suffers from the stair-casing effect, which leads to gradual contrast changes in homogeneous objects, especially near curved edges and corners. In order to circumvent these drawbacks, we propose to combine the two regularization techniques. To that end we replace the isotropic TV semi-norm by an anisotropic term that mirrors the directional structure of either the noisy original data or the smoothed image. We provide a detailed existence theory for our regularization method by using the concept of relaxation. The numerical examples concluding the paper show that the proposed introduction of an anisotropy to TV regularization indeed leads to improved denoising: the stair-casing effect is reduced while at the same time the creation of artifacts is suppressed.  相似文献   

7.
In this paper,we propose new pretreat models for total variation (TV) minimization problems in image deblurring and denoising.Specially,blur operator is considered as useful information in restoration.New models in form is equivalent to pretreat the initial value by image blur operator.We successfully get a new (L.Rudin,S.Osher,and E.Fatemi) ROF model,a new level set motion model and a new anisotropic diffusion model respectively.Numerical experiments demonstrate that,under the same stopping rule,the proposed methods significantly accelerate the convergence of the mothed,save computation time and get the same restored effect.  相似文献   

8.
This article introduces a novel variational model for restoring images degraded by Cauchy noise and/or blurring.The model integrates a nonconvex data-fidelity term with two regularization terms,a sparse representation prior over dictionary learning and total generalized variation(TGV)regularization.The sparse representation prior exploiting patch information enables the preservation of fine features and textural patterns,while adequately denoising in homogeneous regions and contributing natural visual quality.TGV regularization further assists in effectively denoising in smooth regions while retaining edges.By adopting the penalty method and an alternating minimization approach,we present an efficient iterative algorithm to solve the proposed model.Numerical results establish the superiority of the proposed model over other existing models in regard to visual quality and certain image quality assessments.  相似文献   

9.
This paper describes new algorithms and related software for total variation (TV) image reconstruction, more specifically: denoising, inpainting, and deblurring. The algorithms are based on one of Nesterov’s first-order methods, tailored to the image processing applications in such a way that, except for the mandatory regularization parameter, the user needs not specify any parameters in the algorithms. The software is written in C with interface to Matlab (version 7.5 or later), and we demonstrate its performance and use with examples.  相似文献   

10.
Image segmentation is a hot topic in image science. In this paper we present a new variational segmentation model based on the theory of Mumford-Shah model. The aim of our model is to divide noised image, according to a certain criterion, into homogeneous and smooth regions that should correspond to structural units in the scene or objects of interest. The proposed region-based model uses total variation as a regularization term, and different fidelity term can be used for image segmentation in the cases of physical noise, such as Gaussian, Poisson and multiplicative speckle noise. Our model consists of five weighted terms, two of them are responsible for image denoising based on fidelity term and total variation term, the others assure that the three conditions of adherence to the data, smoothing, and discontinuity detection are met at once. We also develop a primal-dual hybrid gradient algorithm for our model. Numerical results on various synthetic and real images are provided to compare our method with others,these results show that our proposed model and algorithms are effective.  相似文献   

11.
Image restoration is an inverse problem that has been widely studied in recent years. The total variation based model by Rudin-Osher-Fatemi (1992) is one of the most effective and well known due to its ability to preserve sharp features in restoration. This paper addresses an important and yet outstanding issue for this model in selection of an optimal regularization parameter, for the case of image deblurring. We propose to compute the optimal regularization parameter along with the restored image in the same variational setting, by considering a Karush Kuhn Tucker (KKT) system. Through establishing analytically the monotonicity result, we can compute this parameter by an iterative algorithm for the KKT system. Such an approach corresponds to solving an equation using discrepancy principle, rather than using discrepancy principle only as a stopping criterion. Numerical experiments show that the algorithm is efficient and effective for image deblurring problems and yet is competitive.  相似文献   

12.
Recently, optimization algorithms for solving a minimization problem whose objective function is a sum of two convex functions have been widely investigated in the field of image processing. In particular, the scenario when a non-differentiable convex function such as the total variation (TV) norm is included in the objective function has received considerable interests since many variational models encountered in image processing have this nature. In this paper, we propose a fast fixed point algorithm based on the adapted metric method, and apply it in the field of TV-based image deblurring. The novel method is derived from the idea of establishing a general fixed point algorithm framework based on an adequate quadratic approximation of one convex function in the objective function, in a way reminiscent of Quasi-Newton methods. Utilizing the non-expansion property of the proximity operator we further investigate the global convergence of the proposed algorithm. Numerical experiments on image deblurring problem demonstrate that the proposed algorithm is very competitive with the current state-of-the-art algorithms in terms of computational efficiency.  相似文献   

13.
In this paper, we deal with l 0-norm data fitting and total variation regularization for image compression and denoising. The l 0-norm data fitting is used for measuring the number of non-zero wavelet coefficients to be employed to represent an image. The regularization term given by the total variation is to recover image edges. Due to intensive numerical computation of using l 0-norm, it is usually approximated by other functions such as the l 1-norm in many image processing applications. The main goal of this paper is to develop a fast and effective algorithm to solve the l 0-norm data fitting and total variation minimization problem. Our idea is to apply an alternating minimization technique to solve this problem, and employ a graph-cuts algorithm to solve the subproblem related to the total variation minimization. Numerical examples in image compression and denoising are given to demonstrate the effectiveness of the proposed algorithm.  相似文献   

14.
We consider the inpainting problem for noisy images. It is very challenge to suppress noise when image inpainting is processed. An image patches based nonlocal variational method is proposed to simultaneously inpainting and denoising in this paper. Our approach is developed on an assumption that the small image patches should be obeyed a distribution which can be described by a high dimension Gaussian Mixture Model. By a maximum a posteriori (MAP) estimation, we formulate a new regularization term according to the log-likelihood function of the mixture model. To optimize this regularization term efficiently, we adopt the idea of the Expectation Maximization (EM) algorithm. In which, the expectation step can give an adaptive weighting function which can be regarded as a nonlocal connections among pixels. Using this fact, we built a framework for non-local image inpainting under noise. Moreover, we mathematically prove the existence of minimizer for the proposed inpainting model. By using a splitting algorithm, the proposed model are able to realize image inpainting and denoising simultaneously. Numerical results show that the proposed method can produce impressive reconstructed results when the inpainting region is rather large.  相似文献   

15.
A fraction-order total variation blind image restoration algorithm based on L1-norm was proposed for restoring the images blurred by unknown point spread function (PSF) during imaging. According to the form of total variation, this paper introduced an arithmetic operator of fraction-order total variation and generated a mathematical model of cost. Semi-quadratic regularization was used to solve the model iteratively so that the solution of this algorithm became easier. This paper also analyzed the convergence of this algorithm and then testified its feasibility in theory. The experimental results showed the proposed algorithm can increase the PSNR of the restored image by 1 dB in relation to the first order total variation blind restoration method and Bayesian blind restoration method. The details in real blurred image were also pretty well restored. The effectiveness of the proposed algorithm revealed that it was practical in the blind image restoration.  相似文献   

16.
Recently, a fast alternating minimization algorithm for total variation image deblurring (FTVd) has been presented by Wang, Yang, Yin, and Zhang (2008) [32]. The method in a nutshell consists of a discrete Fourier transform-based alternating minimization algorithm with periodic boundary conditions and in which two fast Fourier transforms (FFTs) are required per iteration. In this paper, we propose an alternating minimization algorithm for the continuous version of the total variation image deblurring problem. We establish convergence of the proposed continuous alternating minimization algorithm. The continuous setting is very useful to have a unifying representation of the algorithm, independently of the discrete approximation of the deconvolution problem, in particular concerning the strategies for dealing with boundary artifacts. Indeed, an accurate restoration of blurred and noisy images requires a proper treatment of the boundary. A discrete version of our continuous alternating minimization algorithm is obtained following two different strategies: the imposition of appropriate boundary conditions and the enlargement of the domain. The first one is computationally useful in the case of a symmetric blur, while the second one can be efficiently applied for a nonsymmetric blur. Numerical tests show that our algorithm generates higher quality images in comparable running times with respect to the Fast Total Variation deconvolution algorithm.  相似文献   

17.
Many existing algorithms taking the seminorm in BV(Ω) for regularization have achieved great success in image processing. However, this paper considers the total bounded variation regularization based approach to perform image deblurring. Based on this novel model, we introduce an extended split Bregman iteration to obtain the optimum solution quickly. We also provide the rigorous convergence analysis of the iterative algorithm here. Compared with the results of the ROF method, numerical simulations illustrate the more excellent reconstruction performance of the proposed algorithm.  相似文献   

18.
A novel nonlinear anisotropic diffusion model is proposed for image denoising which can be viewed as a novel regularized model that preserves the cherished features of Perona-Malik to some extent. It is characterized by a local dependence in the diffusivity which manifests itself through the presence of $p(x)$-Laplacian and time-delay regularization. The proposed model offers a new nonlinear anisotropic diffusion which makes it possible to effectively enhance the denoising capability and preserve the details while avoiding artifacts. Accordingly, the restored image is very clear and becomes more distinguishable. By Galerkin's method, we establish the well-posedness in the weak setting. Numerical experiments illustrate that the proposed model appears to be overwhelmingly competitive in restoring the images corrupted by Gaussian noise.  相似文献   

19.
基于Tai等人的前期工作,本文研究修正的TV-Stokes图像去噪模型,提出一些新的求解该两步模型的快速算法.我们利用对偶形式和多重网格方法得到一个求解第1步的快速算法.给出另外一种新的求解光滑的切向量场的保不可压性质的算法.在第2步中,我们提出一类有效的全新算法:首先通过计算Poisson方程得到具有光滑法向量场的函数g,然后利用Jia和Zhao的方法得到恢复的图像.新算法的运算速度非常快,用于图像恢复的CPU时间少于0.1 s.数值结果显示新的快速算法是有效的和稳定的,恢复图像的质量也超过了一般去噪方法.  相似文献   

20.
Alternating methods for image deblurring and denoising have recently received considerable attention. The simplest of these methods are two-way methods that restore contaminated images by alternating between deblurring and denoising. This paper describes Krylov subspace-based two-way alternating iterative methods that allow the application of regularization operators different from the identity in both the deblurring and the denoising steps. Numerical examples show that this can improve the quality of the computed restorations. The methods are particularly attractive when matrix-vector products with a discrete blurring operator and its transpose can be evaluated rapidly, but the structure of these operators does not allow inexpensive diagonalization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号