首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report the synthesis, structures and magnetic properties of a series of chromium(III) metal-centered triangle (or "star") clusters, [Cr(4){RC(CH(2)O)(3)}(2)(4,4'-R'(2)-bipy)(3)Cl(6)] [R = Et, R' = H (2); R = HOCH(2), R' = H (3); R = Et, R' = (t)Bu (4)], prepared by two-step solvothermal reactions starting from [CrCl(3)(thf)(3)]. The product of the first stage of this reaction is the salt [Cr(bipy)(2)Cl(2)](2)[Cr(2)Cl(8)(MeCN)(2)] (1). In the absence of the diimine, a different family of tetrametallics is isolated: the butterfly complexes [Cr(4){EtC(CH(2)O)(3)}(2){NH(C(R)NH)(2)}(2)Cl(6)] (R = Me (5), Et (6), Ph (7)] where the chelating N-acetimidoylacetamidine NH(C(R)=NH)(2) ligands are formed in situ via condensation of the nitrile solvents (RCN) under solvothermal conditions. Magnetic measurements show the chromium stars to have an isolated S = 3 ground state, arising from antiferromagnetic coupling between the central and peripheral metal ions, analogous to the well-known Fe(III) stars. Bulk antiferromagnetic ordering is observed at 0.6 K. The butterfly complexes have a singlet ground state, with a low-lying S = 1 first excited state, due to dominant wing-body antiferromagnetic coupling.  相似文献   

2.
Journal of Thermal Analysis and Calorimetry - Four new trinuclear heterometallic molecular complexes with the {Fe2IIIMII μ3-O} core, where M?=?Mn(II), Ni(II), Cu(II) and Zn(II),...  相似文献   

3.
A series containing the highest nuclearity polyoxoniobate (PONb) nanoclusters, ranging from dimers to tetramers, has been obtained. They include one 114‐nuclear {Li8⊂Nb114O316}, one 81‐nuclear {Li3K⊂Nb81O225}, and one 52‐nuclear {H4Nb52O150}. The Nb nuclearity of these PONbs is remarkably larger than those of all known high‐nuclearity PONbs (≤32). Furthermore, the introduction of 3d Cu2+ ions can lead to the generation of extended inorganic–organic hybrid frameworks built from novel, high‐nuclearity, nanoscale heterometallic PONb building blocks {H3Cu3Nb78O222} or {H3Cu4(en)Nb78O222}. These building blocks also contain the largest number of Nb centers of any heterometallic PONbs reported to date. The synthesis of new‐type PONbs has long been a challenging subject in PONb chemistry.  相似文献   

4.
Three polynuclear complexes, [NiNa(μ(1,1,1)-N(3))(μ-hmb)(2)(DMF)](2), (1), [Ni(4)(μ(3)-OMe)(4)(heb)(4)(MeOH)(1.05)(H(2)O)(2.95)], (2) and [Ni(III)(OH)(6)(hmb)(6)Ni(II)(6)]·(ClO(4))(3) (3) (Hhmb = 2-hydroxy-3-methoxy-benzaldehyde; Hheb = 2-hydroxy-3-ethoxy-benzaldehyde), were prepared by reaction of the appropriate ligand with nickel(II) perchloride hexahydrate under solvothermal conditions. All compounds were characterized by elemental analysis, IR spectroscopy and X-ray single-crystal diffraction. Compound 1 exhibits a centrosymmetric heterotetranuclear cluster which represents the first nickel complex to possess two connected face-sharing cubes structure {Ni(2)Na(2)N(2)O(4)}. Compound 2 has a tetranuclear Ni cluster with a cubane topology in which the Ni(II) and the oxygen atoms from the methanol ligands occupying alternate vertices of the cube. Compound 3 consisits of a mixed-valence [Ni(III)(OH)(6)(hmb)(6)Ni(II)(6)](3+) subunits and it represents the first nickel {Ni(II)(6)Ni(III)} complex to possess a planar hexagonal disc-like structure. The results show that the minor ligand modifications or solvent change have a key role in the structural control of the self-assembly process. Magnetic properties of 1-3 in the 300-2 K have been discussed. The {Ni(2)Na(2)} (1) and {Ni(4)} (2) core display dominant ferromagnetic interactions from the nature of the binding modes through μ(3)-N(3)(-) or μ(3)-OCH(3)(-), while {Ni(II)(6)Ni(III)} core (3) displays dominant anti-ferromagnetic interactions from the nature of the binding modes through μ(3)-OH(-).  相似文献   

5.
The reaction of molybdate with vanadium(V) in the presence of sulfite anions is explored showing how, via cation control, stepwise assembly through the {Mo(11)V(7)} cluster yields a {M(25)} cluster-based compound, [Mo(VI)(11)V(V)(5)V(IV)(2)O(52)(μ(9)-SO(3))(Mo(VI)(6)V(V)O(22))](10-) (1a), which was first discovered using cryospray mass spectrometry, whereas switching the cation away from ammonium allows the direct formation of the spherical 'Keplerate' {Mo(72)V(30)} cluster.  相似文献   

6.
The direct reaction between [VCl(3)(thf)3] or [VO(OEt)3] and 2,2'-thiobis{4-(1,1,3,3-tetramethyl-butyl)phenol (tbopH(2)) leads to the formation of [V(2)(micro-tbop-kappa(3)O,S,O)2Cl(2)(CH(3)CN)(2)] (1).4CH(3)CN or [V(2)(micro-OEt)2(O)2(tbop-kappa(3)O,S,O)2] (2), respectively, in high yield. Compounds 1 and 2 were characterized by chemical and physical techniques including X-ray crystallography and variable temperature magnetic susceptibility studies (J = -29.1 cm(-1)) for 1. Complexes 1 and 2 were supported on MgCl2 and when activated with aluminium alkyls, were found to effectively polymerize ethene to produce polyethylene with a narrow molecular weight distribution M(w)/M(n) approximately 3.  相似文献   

7.
A hexanuclear cyano-bridged {MnII4NbIV2} cluster (1) bearing 2,2'-bipyridine (bpy) as the blocking ligand at manganese is obtained from the reaction of cis-[MnCl2(bpy)2] and K4[Nb(CN)8]. When the blocking ligand is 1,10-phenanthroline (phen), a nonanuclear cluster {MnII6NbIV3} (2) is obtained. The structure of [{Mn(bpy)2}4{Nb(CN)8}2] has been solved by single-crystal X-ray crystallography, whereas the phen derivative has been confirmed by means of the structure analysis of the corresponding WIV analogue [{Mn(phen)2}6{W(CN)8}3(H2O)2]. Magnetic measurements revealed S=9 and 27/2 spin ground states for these aggregates as a result of antiferromagnetic Nb-Mn interaction with JNb-Mn=-18.1 cm(-1) (1) and -13.6 cm(-1) (2).  相似文献   

8.
The influence of the pyramidal heteroanion, TeO(3)(2-) in the self-assembly of mixed metal (Mo/V) systems, is demonstrated by the isolation of three novel mixed-metal, mixed-valence architectures, {Mo(12)V(12)Te(3)} (1), {Mo(12)V(12)Te(2)} (2) and {Mo(17)V(8)Te} (3) with the tellurium centres exhibiting the novel μ(8)-TeO(4) and μ(9)-TeO(3) coordination modes while compounds 1 and 2 were discovered utilizing ESI mass spectrometry.  相似文献   

9.
Fourier transform infrared spectroscopy of \(\hbox {CH}_{4}/\hbox {N}_{2}\) and \(\hbox {C}_{2}\hbox {H}_{m}/\hbox {N}_2\) ( \(m = 2, 4, 6\) ) gas mixtures in a medium pressure (300 mbar) dielectric barrier discharge was performed. Consumption of the initial gas and formation of other hydrocarbon and of nitrogen-containing HCN and \(\hbox {NH}_{3}\) molecules was observed. \(\hbox {NH}_{3}\) formation was further confirmed by laser absorption measurements. The experimental result for \(\hbox {NH}_{3}\) is at variance with simulation results.  相似文献   

10.
The reaction of [Rh(7)(CO)(16)](3-) with SnCl(2).2H(2)O in a 1 : 1 molar ratio under N(2) results in the formation of the new heterometallic cluster, [Rh(12)Sn(CO)(27)](4-), in very high yield (ca. 86%). Further controlled additions of SnCl(2).2H(2)O, or solutions of HCl, or [RhCl(COD)](2), give [Rh(12)(micro-Cl)(2)Sn(CO)(23)](4-). Similarly, addition of HBr to [Rh(12)Sn(CO)(27)](4-) gives the related cluster [Rh(12)(micro-Br)(2)Sn(CO)(23)](4-). Notably, if the addition of SnCl(2).2H(2)O to [Rh(12)Sn(CO)(27)](4-) is carried out under a CO atmosphere, the reaction takes a different course and leads to the formation of the new cluster, [Rh(12)Sn(micro(3)-RhCl)(CO)(27)](4-). All the above clusters have been shown by single-crystal X-ray diffraction studies to have a metal framework based on an icosahedron, which is centred by the unique Sn atom. Their chemical reactivity and (13)C-{(103)Rh} HMQC NMR spectroscopic characterization are also reported.  相似文献   

11.
Zhang JJ  Hu SM  Xiang SC  Sheng T  Wu XT  Li YM 《Inorganic chemistry》2006,45(18):7173-7181
Four novel high-nuclear 3d-4f heterometallic clusters were obtained through the self-assembly of Ln(III), Cu(II), and amino acid ligands (2-methylalanine (mAla), glycine (Gly), and L-proline (Pro), respectively). The metal skeleton of cluster 1, [Gd6Cu24(mu3-OH)30(mAla)16(ClO4)(H2O)22].(ClO4)17.(OH)2.(H2O)2(0), may be described as a huge {Gd6Cu12} octahedron connected with 12 additional Cu(II) ions. The structure of cluster 2, Na4[Tb6Cu26(mu3-OH)30(Gly)18(ClO4)(H2O)22].(ClO4)25.(H2O)42, may be described as a {Tb6Cu24} main structure connected with two [Cu(Gly)(H2O)2]+ groups. Compounds {[Ln6Cu24(mu3-OH)30(Pro)12(Ac)6(ClO4)(H2O)13]2Cu(Pro)2}.(ClO4)18.(OH)16.(H2O)55 (Ln= Sm (3), Gd (4)) are 61-nuclear clusters, which represent the largest known 3d-4f clusters so far, the structure can be described as two {Ln6Cu24} octahedral units connected by a trans-Cu(proline)2 bridge. The electrical conductivity measurements reveal that they are temperature-sensitive semiconductors. The magnetic susceptibility measurements display that compound 4 is ferromagnetic.  相似文献   

12.
A series of novel polyiron species have been prepared from the reaction of iron chloride with the 2,5-disubstituted pyridines H2L(n) (H2L1) = N,N'-bis(n-butylcarbamoyl)pyridine-2,6-dicarboxamide; H2L2 = N,N'-bis(n-ethylcarbamoyl)pyridine-2,6-dicarboxamide). By small modifications of the experimental conditions under which the reactions are carried out, it has been possible to prepare the quadruply stranded diiron(II) complex [Fe2(mu-H2L1)4(mu-Cl)2][FeCl4]2 (1), the metallamacrocycle [Fe2(mu-H2L1)2(THF)4Cl2][FeCl4]2 (2), the hexairon(III) compound [Fe6(L1)2(mu-OMe)6(mu4-O)2Cl4] (3), and the mixed-valence trinuclear iron complexes [Fe3(L(n))3(mu3-O)] (n = 1, 4; n = 2, 5). The X-ray crystal structures of 3 and 5 and magnetic studies for all the compounds are herein presented. Interestingly, the structural analysis of 5 at room temperature indicates that one of the iron centers is Fe(III) while the other two have an average valence state between Fe(II) and Fe(III). The five complexes herein presented demonstrate the great versatility that the new ligand has as a building block for the formation of supramolecular coordination assemblies.  相似文献   

13.
Using phosphoryl chloride as a substrate, a family of 1,3,2‐bis(arylamino) phospholidine, 2‐oxide of the general formula ; (X=Cl, 6a ; X=NMe2, 1b ; X=N(CH2C6H5)(CH3), 2b ; X=NHC(O)C6H5, 3b ; X=4Me‐C6H4O, 4b ; X=C6H5O, 5b ; X=NHC6H11, 6b ; X=OC4H8N, 7b ; X=C5H10N, 8b ; X=NH2, 9b ; X=F, 10b and Ar=4Me‐C6H4) was prepared and characterized by 1H, 19F, 31P and 13C NMR and IR spectroscopy, and elemental analysis. A general and practical method for the synthesis of these compounds was selected. The structures of 6a and 2b were determined by single‐crystal X‐ray diffraction techniques. The low temperature NMR spectra of 2b revealed the restricted rotation of P‐N bond according to two independent molecules in crystalline lattice.  相似文献   

14.
Summary Two types of [M(Hapfh)2Cl]Cl2 and [M(apfh)2OH] complexes; Hapfh=2-acetylpyridine-2-furoylhydrazone [M=LaIII, PrIII, NdIII, EuIII or DyIII], possessing the neutral and deprotonated ligand respectively, have been prepared and characterised by elemental analysis, molar conductance, magnetic susceptibility measurements, electronic, i.r. and n.m.r. (1H and13C) spectral studies. The nephelauxetic ratio ( ), covalency () and bonding parameter (b1/2) have been calculated for the NdIII complexes. I.r. spectral studies reveal that Hapfh acts as a neutral tridentate in [M(Hapfh)2Cl]Cl2 and uninegative tridentate in [M(apfh)2OH]. A coordination number of seven around the metal ions is proposed.  相似文献   

15.
New luminescent heterometallic complexes of Eu3+ and Zn2+ were synthesized: Zn2Eu(NO3)(Piv)6(L)2 (Piv is pivalate anion, L = MeCN (1), 2,3-lutidine (2), 2,2′-bpy (3)) and [Zn2(Piv)3(2,2′-bpy)2][ZnEu(NO3)3(Piv)3(2,2′-bpy)] (4). In the case of 2,2′-bpy, the order of mixing of the reagents ([Zn(Piv)2] n , Eu(NO3)3·6H2O, and 2,2′-bpy) affects the composition of the final reaction product: the reaction of [Zn(Piv)2] n and Eu(NO3)3·6H2O (in the ratio Zn : Eu = 3 : 1) in MeCN affords complex 1 and the subsequent addition of 2,2′-bpy (Zn : L = 1 : 1) affords complex 3. Complex 4 is formed in the reaction of [Zn(Piv)2] n and 2,2′-bpy (Zn : L = 1 : 1) in MeCN followed by the addition of Eu(NO3)3·6H2O (Zn : Eu = 3 : 1). The luminescence spectra of compounds 1–4 (Zn : Eu = 3 : 1) exhibit metal-centered luminescence of Eu3+. The most efficient ligand-antenna is 2,2′-bpy, which is due to the optimum position of the triplet level of this ligand.  相似文献   

16.
The reactivity of aryl monocarboxylic acids (benzoic, 1- or 2-naphtoic, 4’-methylbiphenyl-4-carboxylic, and anthracene-9-carboxylic acids) as complexing agents for the ethoxide niobium(V) (Nb(OEt)5 precursor has been investigated. A total of eight coordination complexes were isolated with distinct niobium(V) nuclearities as well as carboxylate complexation states. The use of benzoic acid gives a tetranuclear core Nb42-O)4(L)4(OEt)8] (L=benzoate ( 1 )) with four Nb−(μ2-O)−Nb linkages in a square plane configuration. A similar tetramer, 7 , was obtained with 2-naphtoic acid by using a 55 % humid atmosphere synthetic route. Two types of dinuclear brick were identified with one central Nb−(μ2-O)−Nb linkage; they differ in their complexation state, with one bridging carboxylate ([Nb22-O)(μ2-OEt)(L)(OEt)6], with L=1-naphtoate ( 3 ) or anthracene-9-carboxylate ( 5 )) or two bridging carboxylate groups ([Nb22-O)(L)2(OEt)6], with L=4’-methylbiphenyl-4-carboxylic ( 4 ) or anthracene-9-carboxylate ( 6 )). An octanuclear moiety [Nb82-O)12(L)81-L)4−x(OEt)4+x] (with L=2-naphtoate, x=0 or 2; 8 ) was obtained by using a solvothermal route in acetonitrile; it has a cubic configuration with niobium centers at each node, linked by 12 μ2-O groups. The formation of the niobium oxo clusters was characterized by infrared and liquid 1H NMR spectroscopy in order to analyze the esterification reaction, which induces the release of water molecules that further react through oxolation with niobium atoms, in different {Nb2O}, {Nb4O4} and {Nb8O12} nuclearities.  相似文献   

17.
The syntheses, structures, and magnetic properties of a series of tetranuclear cyanide-bridged compounds are reported. This family of molecular squares, [{M(II)Cl2}2{Co(II)(triphos)(CN)2}2] (M = Mn ([CoMn]), Fe ([CoFe]), Co ([CoCo]), Ni ([CoNi]), and Zn ([CoZn]), triphos = 1,1,1-tris(diphenylphosphinomethyl)ethane), has been synthesized by the reaction of Co(II)(triphos)(CN)2 and MCl2 (M = Mn, Co, Ni, Zn) or Fe4Cl8(THF)6 in a CH2Cl2/EtOH mixture. These complexes are isostructural and consist of two pentacoordinate Co(II) and two tetrahedral M(II) centers. The resulting molecular squares are characterized by antiferromagnetic coupling between metal centers that generally follows the spin-coupling model S total = SM(II)1 - SCo1 + SM(II)2 - SCo2. Magnetic parameters for all the complexes were measured using SQUID magnetometry. Additionally, [CoZn] and [CoMn] were studied by both conventional and high-frequency and high-field electron paramagnetic resonance.  相似文献   

18.
Two manganese complexes, [Mn2(tptz)2Cl4] · CH3CN (1) and [Mn(tptz(ac)(N3)(H2O)] · H2O (2) (where tptz = 2,4,6-tri(2-pyridyl)-1,3,5-triazine, ac = acetate anion), were synthesized and characterized by elemental analyses, infrared spectra, and UV–Vis absorption spectral analyses. The structures of both the complexes were determined by single crystal X-ray diffraction analysis. Complex 1 is binuclear with chloro-bridged manganese ions at the Mn–Mn separation of 3.777(27) Å. Each manganese center in 1 is six coordinate with three nitrogens from a tridentate tptz, three chlorides (one terminal and two bridging), adopting a centrosymmetric distorted octahedral geometry. Various hydrogen bonds form 2-D spiral structures in 1 with Mn–Mn separation of 7.421(2) Å along a-axis and 9.121(2) Å along b-axis. Complex 2 is seven coordinate with pentagonal bipyramidal geometry. The metal center coordinates to three nitrogens from tptz, two oxygens from acetate, one nitrogen from azide, and one oxygen from water. It has a 1-D layered structure, where three independent molecules are linked by uncoordinated water present in the lattice. Magnetic susceptibility in the temperature range 5–300 K for 1 shows the presence of antiferromagnetic interaction between the local high-spin manganese(II) ions with J = ?0.17 cm?1.  相似文献   

19.
Three metal-organic frameworks (MOFs), [Cd3(OABDC)2(e-urea)4]n (1), [Cd3(OABDC)2(H2O)5)]n (2) and [Cd2Ba(OABDC)2(H2O)7]n (3) (H3OABDC = 5-oxyacetate isophthalic acid, e-urea = 2-imidazolidinone), were prepared using H3OABDC and metal salts. Single-crystal X-ray diffraction analyses reveal that 1 features a 2-D layered structure constructed from trinuclear {Cd3(COO)6} SBUs and represents a (3,6)-connected kgd topology. Compounds 2 and 3 are 3-D inorganic–organic hybrid frameworks; 2 employs infinite inorganic –Cd–O–Cd– chains as SBUs, whereas (3,6)-connected ant-type 3 employs heterometallic trinuclear {Cd2Ba(COO)4} clusters as SBUs. The structures of these three compounds indicate that the SBUs play an important role in the construction of MOFs. Moreover, the thermal stabilities and solid-state photoluminescent properties of these three compounds have also been investigated.  相似文献   

20.
Summary Novel mixed-ligand cyanonitrosyl complexes of chromium(I), [Cr(NO)(CN)2(L)2(H2O)], (where L=2-, 3-, or 4-benzylpyridine, 2-(4-chlorobenzyl)pyridine, 2-, 3-, or 4-benzoylpyridine, 3-(4-methylbenzoyl)pyridine, or 2-, 3-, or 4-acetylpyridine) have been prepared by the interaction of potassium pentacyanonitrosylchromate(I) monohydrate, K3[Cr(NO)(CN)5]·H2O with L. The complexes, characterized by elemental analyses, magnetic measurements, e.s.r. and i.r. spectral studies, contain chromium(I) in a low-spind 5-configuration. An octahedral structure, where CN istrans to CN, L istrans to L, and NO istrans to water is proposed for all the complexesEnemark and Feltham(1) have proposed circumventing the problem of the non-innocent nature of the nitrosyl ligand by considering nitrosyls as containing the {MNO} n group, wheren is the number of electrons of M, plus the number of electrons in the *-orbital of the NO (or more convenientlyn is the number of d-electrons if nitrosyl is regarded as being coordinated as NO+)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号