首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The hydrolysis of protopanaxadiol-type saponin mixture by various glycoside hydrolases was examined. Among these enzymes, crude preparations of lactase from Aspergillus oryzae, beta-galactosidase from A. oryzae, and cellulase from Trichoderma viride were found to produce ginsenoside F(2) [3-O-(beta-D-glucopyranosyl)-20-O-beta-D-glucopyranosyl-20(S)-protopanaxadiol], compound K [20-O-beta-D-glucopyranosyl-20(S)-protopanaxadiol], and ginsenoside Rd {3-O-[beta-D-glucopyranosyl-(1-->2)-beta-D-glucopyranosyl]-20-O-beta-D-glucopyranosyl-20(S)-protopanaxadiol}, respectively, from protopanaxadiol-type saponin mixture in large quantities. Moreover, the crude preparation of lactase from Penicillium sp. having a high producing activity of ginsenoside Rh(1) (6-O-beta-D-glucopyranosyl-20(S)-protopanaxatriol) from protopanaxatriol-type saponin mixture gave ginsenoside Rd as a main product, ginsenoside Rg(3) {3-O-[beta-D-glucopyranosyl-(1-->2)-beta-D-glucopyranosyl]-20(S)-protopanaxadiol}, and compound K from protopanaxadiol-type saponin mixture. The hydrolytic pathways of ginsenosides Rb(1), Rb(2), and Rc to ginsenosides Rd, Rg(3), and F(2), and compound K by crude preparations of four glycoside hydrolases were also studied. This is the first report on the enzymatic preparation of an intestinal bacterial metabolite, ginsenoside F(2), in quantity, and a considerable amount of a minor saponin, ginsenoside Rg(3), from a protopanaxadiol-type saponin mixture.  相似文献   

2.
In order to clarify some similarities and differences of decomposition modes between 20(S)-protopanaxadiol (20(S)-ppd) saponins, represented by ginsenoside Rb1 (Rb1) and ginsenoside Rb2 (Rb2), the decompositions of Rb1 and Rb2 in the rat gastrointestinal tract, 0.1 N HCl and crude hesperidinase were investigated in detail. As in the case of Rb2 reported previously, Rb1 was hydrolyzed to 20(R,S)-ginsenoside Rg3 in 0.1 N HCl. On the other hand, hydroperoxidation of Rb1 occurred in rat stomach; the major hydroperoxide was separated and identified as the 25-hydroperoxy-23-ene derivative of Rb1 (VIII) by 1H- and 13C-nuclear magnetic resonance and fast atom bombardment mass spectrometry. The decomposition modes of 20(S)-ppd saponins (Rb1 and Rb2) differed from that of 20(S)-protopanaxatriol saponin (Rg1) in rat stomach. In rat large intestine, five decomposition products of Rb1 were observed by thin-layer chromatography, and these were identified as gypenoside XVII (G-XVII), ginsenoside Rd (Rd), ginsenoside F2 (F2), compound K (C-K) and VIII. The decomposition modes of Rb1 and Rb2, both 20(S)-ppd saponins, are considered to be different because of the hydrolysis rate in the terminal sugar moiety at the C-20 hydroxyl group in the rat large intestine. Using crude hesperidinase, Rb1 was decomposed to G-XVII, F2 and C-K, and Rb2 was decomposed to 3-O-beta-D-glucopyranosyl-20-O-[alpha-L-arabinopyranosyl(1----6)-b eta-D- glucopyranosyl]-20-(S)-ppd, F2 and C-K. Consequently, it appears that hydrolysis by beta-glucosidase, which is present in the rat large intestine, is distinct from that by crude hesperidinase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
A new dammarane-type triterpenoid saponin, ginsenoside Rg(8) (1), was isolated from the roots of Panax quinquefolium, along with five known saponins, (20E)-ginsenoside F(4) (2), ginsenosides Rh(1) (3), Rg(2) (4), F(1) (5), and (20R)-ginsenoside Rh(1) (6). The structure of ginsenoside Rg(8) (1) was determined to be (3beta,6alpha,12beta,20E)-24,25-epoxy-3,12,23-trihydroxydammar-20(22)-en-6-O-alpha-L-rhamnopyranosyl(1-->2)-beta-D-glucopyranoside by various spectroscopic analyses. Among the known saponins, (20E)-ginsenoside F(4) (2) and ginsenoside F(1) (5) were first reported from the title plant.  相似文献   

4.
Nine protopanaxatriol glycosides isolated from mild acid hydrolysis products of crude root saponins of Panax notoginseng were identified as 20(R)‐ginsenoside‐Rh1, 20(S)‐ginsenoside‐Rh1, ginsenoside‐Rg1, ‐Re and ‐Rg2, notoginsenoside‐R2 and ‐R1, a mixture of 25‐hydroxy‐20(S)‐ginsenoside‐Rh1 and its C‐20 (R) epimer, ginsenoside‐Rh4. The complete assignments of the 1H and 13C NMR chemical shifts for these glycosides were obtained by means of 2D NMR techniques, including 1H–1H COSY, ROESY, HMQC, HMBC and HMQC‐TOCSY spectra. The glycosylation shift effect of protopanaxatriol and the differences in chemical shifts between 20(R)‐ and 20(S)‐protopanaxatriol isomers are also discussed. Except for ginsenoside‐Re and ‐Rg2, complete NMR assignments of the other seven glycosides are reported for the first time. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
The decomposition of ginsenoside Rb2 (Rb2) in rat stomach (in vivo) and in 0.1 N HCl solution (in vitro) was investigated in detail. By treating with 0.1 N HCl, the acidity of which is similar to that of gastric juice, a part of Rb2 was hydrolyzed to 20(R,S)-ginsenoside Rg3. On the other hand, Rb2 was little decomposed in rat stomach and a small quantity of an unidentified metabolite, which was different from the hydrolyzed products in 0.1 N HCl, was observed. The metabolite was separated into four compounds, which were identified by 1H- and 13C-nuclear magnetic resonance and fast atom bombardment mass spectrometry. These compounds were determined to be 25-hydroxy-23-ene (IV), 24-hydroxy-25-ene (V), 25-hydroperoxy-23-ene (VI) and 24-hydroperoxy-25-ene (VII) derivative of Rb2, respectively. In this study, it is suggested that 20(S)-protopanaxatriol saponins undergo hydrolysis of the C-20 glycosyl moiety and hydration of the side chain, on the other hand, 20(S)-protopanaxadiol saponins undergo oxygenation of the side chain.  相似文献   

6.
王占良  王弘  陈世忠 《色谱》2006,24(4):325-330
采用高效液相色谱-二极管阵列检测/质谱(HPLC-DAD/MS)联用技术,以10 mmol/L醋酸铵和乙腈混合溶液梯度洗脱 系统为流动相,应用C18色谱柱对生脉饮煎剂中人参皂甙类成分进行分离鉴定。分析结果表明:生脉饮煎剂中主要含有17个 人参皂甙类成分,即20(R)-人参皂甙Rh1、Rh2、Rg3、Rg2,20(S)-人参皂甙Rh1、Rh2、Rg3、Rg2,人参皂甙Rf、Rg6、Rg5 、F4、Rk1、Rk3、Rh4,20(S)-和20(R)-原人参三醇。人参皂甙成分在煎煮过程中发生了很大变化,主要变成了一些中低 极性产物,这是因为煎煮过程中发生了水解、差向异构、脱水等反应。该方法简便、精确、灵敏度高,可以用来分析生脉 饮煎剂中人参皂甙的变化。  相似文献   

7.
Seven new dammarane-type triterpenoid saponins, chikusetsusaponin FK1 (1), chikusetsusaponin FK2 (2), chikusetsusaponin FK3 (3), chikusetsusaponin FK4 (4), chikusetsusaponin FK5 (5), chikusetsusaponin FK6 (6), and chikusetsusaponin FK7 (7), and eleven known triterpenoid saponins, ginsenoside Rb3 (9), ginsenoside Rc (10), chikusetsusaponin VI (11), ginsenoside Re (12), ginsenoside Rg1 (13), pseudo-ginsenoside RS1 (14), notoginsenoside R1 (15), chikusetsusaponin L5) (17), chikusetsusaponin L10 (18), chikusetsusaponin IVa (19), and chikusetsusaponin V (20), were isolated from the fruits of Panax japonicus C. A. MEYER, collected in Kumamoto prefecture, Japan, and two new dammarane-type triterpenoid saponin, chikusetsusaponin FK5 (5) and chikusetsusaponin FM1 (8), and five known triterpenoid saponins, ginsenoside Rb3 (9), ginsenoside Rc (10), ginsenoside Re (12), ginsenoside Rg1 (13), and floralquinquenoside E (16), were isolated from the fruits of P. japonicus C. A. MEYER, collected in Miyazaki prefecture, Japan. The structures of new chikusetsusaponins were elucidated on the basis of chemical and physicochemical evidences.  相似文献   

8.
Lu D  Li P  Liu J 《Natural product research》2012,26(15):1395-1401
Six triterpenoid saponins, including one new compound, quinquenoside F?(1), and five known compounds ginsenoside Re, ginsenoside Rg?, ginsenoside Rg?, ginsenoside Rh? and pseudo-ginsenoside F??, were isolated from the fruits of Panax quinquefolium L., and the structure of compound 1 was elucidated as 6-O-β-d-glucopyranosyl-20-O-[α-l-arabino- furanosyl-(1-6)-β-d-glucopyranosyl]-dammar-24-ene-3β, 6α, 12β, 20S-tetraol by the combination of the analysis of spectroscopic data and chemical evidences. The complete signal assignments of the six compounds were carried out by means of 2D NMR spectral analysis.  相似文献   

9.
Ginsenoside Rb1 is an active protopanaxadiol saponin from Panax species. In order to compare the similarities and differences of microbial and mammalian metabolisms of ginsenoside Rb1, the microbial transformation by Acremonium strictum and metabolism in rats were comparatively studied. Microbial transformation of ginsenoside Rb1 by Acremonium strictum AS 3.2058 resulted in the formation of eight metabolites. Ten metabolites (M1-M10) were detected from the in vivo study in rats and eight of them were identified as the same compounds as those obtained from microbial metabolism by liquid chromatography-tandem mass spectrometry analysis and comparison with reference standards obtained from microbial metabolism. Their structures were identified as ginsenoside Rd, gypenoside XVII, 20(S)-ginsenoside Rg3, 20(R)-ginsenoside Rg3, ginsenoside F2, compound K, 12beta-hydroxydammar-3-one-20(S)-O-beta-d-glucopyranoside, and 25-hydroxyl-(E)-20(22)-ene-ginsenoside Rg3, respectively. The structures of the additional two metabolites were tentatively characterized as 20(22),24-diene-ginsenoside Rg3 and 25-hydroxyginsenoside Rd by HPLC-MS/MS analysis. M7-M10 are the first four reported metabolites in vivo. The time course of rat metabolism of ginsenoside Rb1 was also investigated.  相似文献   

10.
利用高效液相色谱-电喷雾-多级串联质谱(HPLC-ESI-MSn)技术分析人参中3种达玛烷型皂苷(三七皂苷R1,人参皂苷Rd、20(S)-Rg3)在12-磷钨酸环境中转化的产物结构和转化途径。由原人参三醇型皂苷R1转化获得9种产物:20(S)-25-OH-R2、20(R)-25-OH-R2、25-OH-T5、20(S)-R2、20(R)-R2、20(S)-25-epoxy-R2、20(R)-25-epoxy-R2、T5、3β,12β-二羟基-6α-(2-O-β-D-吡喃木糖基-β-D-吡喃葡糖氧基)达玛烷-20(22),24-二烯。由原人参二醇型皂苷Rd和20(S)-Rg3转化得到10种产物:20(S)-25-OH-Rg3、20(R)-25-OH-Rg3、25-OH-Rk1、25-OH-Rg5、20(S)-Rg3、20(R)-Rg3、(20S,25)-epoxy-Rg3、(20R,25)-epoxy-Rg3、Rk1、Rg5。通过分析转化产物结构,并考察主要产物含量随转化时间的变化趋势,总结了人参中达玛烷型皂苷在酸性水溶液环境中的转化途径,即通过C20位去糖基化和差向异构化反应,以及烯烃链的水合、脱水、环合反应转化为稀有皂苷。  相似文献   

11.
利用高效液相色谱-飞行时间质谱联用的方法,分别对人参配伍山楂前后人参皂苷的变化进行分析,同时对人参皂苷Re、Rg1、Rb1、Rd与山楂配伍的水解规律进行系统研究,并与单独煎煮液、仿山楂配伍pH值煎煮液的水解产物进行比较,结果发现人参与山楂配伍后人参皂苷Rg1、Rb1含量明显减少,而人参皂苷Re、Rd、Rg2、Rg3、F2、Rh1含量明显增加,其中人参皂苷Re与山楂配伍后水解产物为人参皂苷20(R)-Rg2、20(S)-Rg2,仿山楂配伍pH值水解产物为人参皂苷20(R)-Rg2、20(S)-Rg2、Rg4、Rg6;人参皂苷Rg1与山楂配伍后水解产物为20(S)-Rh1、20(R)-Rh1,仿山楂pH值水解产物为20(S)-Rh1、20(R)-Rh1、Rh4、Rk3;人参皂苷Rb1与山楂配伍后水解产物为Rd、20(S)-Rg3,仿山楂pH值水解产物为F2、20(S)-Rg3;人参皂苷Rd与山楂配伍后水解产物为F2、20(S)-Rg3、20(R)-Rg3,仿山楂pH值水解产物为20(S)-Rg3、20(R)-Rg3。研究表明,不同人参皂苷和山楂配伍后与仿山楂pH值的水解产物并不相同,人参与山楂配伍改变了人参皂苷成分的种类及含量。本研究为临床方剂中人参与山楂配伍后成分的变化提供物质基础数据。  相似文献   

12.
A novel strategy for the qualitative and quantitative determination of 20(S)-protopanaxatriol saponins (PTS) and 20(S)-protopanaxadiol saponins (PDS) in Panax notoginseng, Panax ginseng and Panax quinquefolium, based on the overlapping peaks of main components of PTS (calibrated by ginsenoside Rg1) and PDS (calibrated by ginsenoside Rb1), was proposed. The analysis was performed by using high-performance liquid chromatography coupled with evaporative light scattering detection (HPLC-ELSD). Under specific chromatographic conditions, all samples showed two overlapping peaks containing several main ginsenosides belonging to PTS and PDS, respectively. The overlapping peaks were also identified by using HPLC–MS. Based on the sum and ratio of PTS and PDS, 60 tested Panax samples were divided into three main clusters according to their species. The findings suggested that this strategy provides a simple and rapid approach to quantify PTS and PDS in Panax herbs.  相似文献   

13.
Two new dammarane-type triterpenoid saponins, chikusetsusaponin LM1 (1), chikusetsusaponin LM2 (2), and three known triterpenoid saponins, ginsenoside Re (3), ginsenoside Rg1 (4), ginsenoside F3 (5), were isolated from the leaves of P. japonicus C. A. Meyer collected in Miyazaki prefecture, Japan. The structures of new chikusetsusaponins were elucidated on the basis of spectroscopic and physicochemical evidences.  相似文献   

14.
珠子参化学成分分析   总被引:6,自引:0,他引:6  
从珠子参根茎中分离得到7个化合物. 利用核磁共振、 质谱和红外等手段, 并结合其理化性质, 鉴定了其结构, 它们分别是24(R)-珠子参苷R1, 6-O-[β-D-吡喃葡萄糖基(1→2)-β-D-吡喃葡萄糖基]-20-O-[β-D-吡喃葡萄糖基(1→4)-β-D-吡喃葡萄糖基]-20(S)-原人参三醇、 6″-乙酰基-人参皂苷Rd、 人参皂苷Rf、 竹节参皂苷Ⅳa、 人参皂苷Rd和竹节参皂苷Ⅴ. 其中, 24(R)-珠子参苷R1和6-O-[β-D-吡喃葡萄糖基(1→2)-β-D-吡喃葡萄糖基]-20-O-[β-D-吡喃葡萄糖基(1→4)-β-D-吡喃葡萄糖基]-20(S)-原人参三醇为2个新化合物, 6″-乙酰基-人参皂苷Rd 和人参皂苷Rf为首次从珠子参根茎中得到.  相似文献   

15.
In this paper, the new type ginsenosidase which hydrolyzing multi-glycosides of ginsenoside, named ginsenoside type I from Aspergillus sp.g48p strain was isolated, characterized and generally described. The enzyme molecular weight was about 80 kDa. Ginsenosidase type I can hydrolyze different glycoside of protopanaxadiol type ginsenosides (PPD); i.e., can hydrolyze the 3(carbon)-O-beta-glucoside of Rb1, Rb2, Rb3, Rc, Rd; can hydrolyze 20(carbon)-O-beta-glucoside of Rb1, 20-O-beta-xyloside of Rb3, 20-O-alpha-arabinoside(p) of Rb2 and 20-O-alpha-arabinoside(f) of Rc to produce mainly F2, compound-K (C-K) and small Rh2, but can not hydrolyze the glycosides of protopanaxatriol type ginsenoside (PPT) such as Re, Rf, Rg1. So, when the ginsenosidase type I hydrolyzed ginsenosides, the enzyme selected ginsenoside-aglycone type, can hydrolyze different glycosides of PPD type ginsenoside; however no selected glycoside type, can hydrolyze multi-glycosides of PPD type ginsenosides. These properties were novel properties, and differentiated with the other previously described glycosidases.  相似文献   

16.
Methyl jasmonate (MJ)-induced changes of triterpene saponins in Panax ginseng C.A. Meyer adventitious roots, and expression of the genes involved in triterpene biosynthesis, were analyzed. Compared with controls, expression of the squalene epoxidase and dammarenediol synthase genes was clearly upregulated and total saponin content increased in response to MJ. The highest total saponin content was obtained by use of 10 mg L?1 MJ for 24 h, and was 4.76-fold greater than in the control group. Expression of the two genes associated with the cytochrome P450 family was no different from that in controls. The level of ginsenoside in the Rg group thus increased much less than that in the Rb group. This investigation showed that the total saponin content of ginseng adventitious root is related to gene expression in ginsenoside biosynthesis.  相似文献   

17.
The decomposition of ginsenoside Rb2 (Rb2) in the rat large intestine after oral administration was investigated in detail. A part of Rb2 was decomposed and six decomposition products (I-VI) were observed on thin-layer chromatogram. Among them, five products (I-V) were isolated, and identification of these compounds was done by carbon-13 nuclear magnetic resonance (13C-NMR). On the basis of 13C-NMR analysis, these compounds were identified as ginsenoside Rd (I), 3-O-beta-D-glucopyranosyl-20-O- [alpha-L-arabinopyranosyl(1----6)-beta-D-glucopyranosyl]-20(S)- proto-panaxadiol (II), ginsenoside F2 (III), 20-O-[alpha-L-arabinopyranosyl(1----6)-beta-D-glucopyranosyl]-20(S )- protopanaxadiol (IV), and compound K (V), respectively.  相似文献   

18.
谢文博  夏璐  李浩  李文  曹宇  黄云  雷福厚 《色谱》2022,40(3):234-241
三七中发挥药效的主要成分为三七皂苷R1、人参皂苷Rg1、人参皂苷Re、人参皂苷Rb1和人参皂苷Rd,用于贫血、冠心病、高血压、脑卒中后遗症等疾病的治疗,但其化学成分多且难分离.将氢化松香丙烯酸羟乙酯(HRHA)通过巯基-烯点击化学反应键合到烷基化硅胶表面,制备出一种新型的改性松香键合二氧化硅高效液相色谱固定相(SiO2...  相似文献   

19.
This present work is designed to evaluate the anti-diabetic potential of 22 ginsenosides via the inhibition against rat lens aldose reductase (RLAR), and human recombinant aldose reductase (HRAR), using DL-glyceraldehyde as a substrate. Among the ginsenosides tested, ginsenoside Rh2, (20S) ginsenoside Rg3, (20R) ginsenoside Rg3, and ginsenoside Rh1 inhibited RLAR significantly, with IC50 values of 0.67, 1.25, 4.28, and 7.28 µM, respectively. Moreover, protopanaxadiol, protopanaxatriol, compound K, and ginsenoside Rh1 were potent inhibitors of HRAR, with IC50 values of 0.36, 1.43, 2.23, and 4.66 µM, respectively. The relationship of structure–activity exposed that the existence of hydroxyl groups, linkages, and their stereo-structure, as well as the sugar moieties of the ginsenoside skeleton, represented a significant role in the inhibition of HRAR and RLAR. Additional, various modes of ginsenoside inhibition and molecular docking simulation indicated negative binding energies. It was also indicated that it has a strong capacity and high affinity to bind the active sites of enzymes. Further, active ginsenosides suppressed sorbitol accumulation in rat lenses under high-glucose conditions, demonstrating their potential to prevent sorbitol accumulation ex vivo. The findings of the present study suggest the potential of ginsenoside derivatives for use in the development of therapeutic or preventive agents for diabetic complications.  相似文献   

20.
The main saponin (1) present in the mesocarp of Balanites aegyptiaca fruit is a mixture of 22R and 22S epimers of 26-(O-beta-D-glucopyranosyl)-3-beta-[4-O-(beta-D-glucopyranosyl)-2-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyloxy]-22,26-dihydroxyfurost-5-ene. This structure differs from a previously reported saponin isolated from this source by the site of attachment of the rhamnosyl residue, and presumably represents a structural revision of the latter. The main saponin (2) present in the kernel is a xylopyranosyl derivative of 1. The use of high-field NMR enabled the practically complete assignment of 1H and 13C chemical shifts of these complex saponins, existing as a mixture of C-22 epimers. Moreover, the work represents a new approach to structural elucidation of saponins: direct preparative-scale HPLC-RID of crude extracts followed by high-field NMR investigations supported by ESI-MSn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号