首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
New caprolactam dodecamolybdosilicate of the composition (C6H11NO)4.5Н4[SiМо12O40] (I) is synthesized. Chemical and crystallographic analyses, NMR and IR spectroscopic studies are performed. Compound I is found to crystallize in the monoclinic system with the space group P21/n. Unit cell parameters are: a = 19.945(4) Å, b = 13.340(3) Å, c = 28.110(6) Å, β = 110.75(3)°, ρcalc = 2.232 g/cm3, М = 2350.63, Z = 4, V = 6994(3) Å3.  相似文献   

2.
Two opposite configuration (R/S) of chiral complexes (C8H11N)2 · Zn(OAc)2 (Ia and Ib—L-(−)-) and D-(+)-isomer) were synthesized by a simple one-pot method. The crystal structures of Ia and ib determined by X-ray crystallography.  相似文献   

3.
Thermogravimetry combined with evolved gas mass spectrometry has been used to characterise the mineral crandallite CaAl3(PO4)2(OH)5·(H2O) and to ascertain the thermal stability of this ‘cave’ mineral. X-ray diffraction proves the presence of the mineral and identifies the products of the thermal decomposition. The mineral crandallite is formed through the reaction of calcite with bat guano. Thermal analysis shows that the mineral starts to decompose through dehydration at low temperatures at around 139 °C and the dehydroxylation occurs over the temperature range 200–700 °C with loss of the OH units. The critical temperature for OH loss is around 416 °C and above this temperature the mineral structure is altered. Some minor loss of carbonate impurity occurs at 788 °C. This study shows the mineral is unstable above 139 °C. This temperature is well above the temperature in the caves of 15 °C maximum. A chemical reaction for the synthesis of crandallite is offered and the mechanism for the thermal decomposition is given.  相似文献   

4.
The crystal structure of a double complex salt of the composition [Au(en)2]2[Cu(C2O4)2]3·8H2O (en = ethylenediamine) at 150 K is determined by single crystal X-ray diffraction. The crystal data for C20H48Au2Cu3N8O32 are: a = 9.1761(3) Å, b = 16.9749(6) Å, c = 13.4475(5) Å, β = 104.333(1)°, V = 2029.43(12) Å3, P21/c space group, Z = 2, d x = 2.450 g/cm3. It is demonstrated that the thermal decomposition of the double complex salt in a helium or hydrogen atmosphere affords the solid solution Au0.4Cu0.6.  相似文献   

5.
Sublimation of europium pivalate binuclear complexes Eu2(Piv)6 and [Eu2(Piv)6 · (Phen)2] (Piv = (CH3)3CCOO, Phen = C12H8N2) in the temperature range of 383–660 K is studied by the Knudsen effusion method with mass-spectrometric analysis of the gas phase. The vaporization of Eu2(Piv)6 is shown to be accompanied by polymerization and the formation of Eu2(Piv)6 and Eu4(Piv)12 molecules. The saturated vapor over the mixed-ligand complex of europium pivalate with o-phenanthroline consists of Phen, Eu2(Piv)6, and Eu4(Piv)12 molecules. The partial pressures of the gas components, as well as the standard enthalpies of sublimation and dissociation of the reaction proceeding with removal of phenanthroline have been determined.  相似文献   

6.
The paper presents experimental results pertaining to the reduction of oxide mixtures namely (Fe2O3 + CuO) and (Fe2O3 + Co3O4), by low-temperature hydrogen plasma in a microwave hydrogen plasma set-up, at microwave power 750 W and hydrogen flow rate 2.5 × 10?6 m3 s?1. The objective was to examine the effect of addition of CuO or Co3O4, on the reduction of Fe2O3. In the case of the Fe2O3 and CuO mixture, oxides were reduced to form Fe and Cu metals. Enhancement of reduction of iron oxide was marginal. However, in the case of the Fe2O3 and Co3O4 mixture, FeCo alloy was formed within compositions of Fe70Co30, to Fe30Co70. Since the temperature was below 841 K, no FeO formed during reduction and the sequence of Fe2O3 reduction was found to be Fe2O3 → Fe3O4 → Fe. Reduction of Co3O4 preceded that of Fe2O3. In the beginning, the reduction of oxides led to the formation of Fe–Co alloy that was rich in Co. Later Fe continued to enter into the alloy phase through diffusion and homogenization. The lattice strain of the alloy as a function of its composition was measured. In the oxide mixture in which excessive amount of Co3O4 was present, all the Co formed after reduction could not form the alloy and part of it appeared as FCC Co metal. The crystallite size of the alloy was in the range of 22–30 nm. The crystal size of the Fe–Co alloy reduced with an increase in Co concentration.  相似文献   

7.
The structure of the crystalline β’ modification of a radical cation salt of bis(ethylenedithio)tetrathiafulvalene with mixed dihalogen iodide (BEDT-TTF)2Br0.12Cl1.88I (I) was investigated by single crystal X-ray diffraction. Triclinic structure of I (space group , a = 6.638 Å, b = 9.779 Å, c = 12.920 Å; α = 87.24°, β = 79.10°, γ = 81.37°) was solved by direct methods and refined in a full-matrix anisotropic approximation to R = 0.030 using all 3897 measured independent reflections (CAD-4 automatic diffractometer, λMoK α). In the crystal structure of I the mixed Cl*-I-Cl* anion occupies the inversion center i(000), its terminal atom having a composition Cl* = Cl0.94Br0.06. The semi-radical cation (C10H8S8)1/2+ has one of two ethylene groups disordered.Original Russian Text Copyright © 2004 by A. N. Chekhlov__________Translated from Zhurnal Strukturnoi Khimii, Vol. 45, No. 5, pp. 960–965, September–October, 2004.  相似文献   

8.
The compound [Co(NH3)6]2[W4Se4(CN)12]·8.5H2O was obtained by evaporating an aqueous ammonia solution of K6[W4Se4(CN)12]·6H2O and CoCl2·6H2O complexes. The starting Co(II) of CoCl2·6H2O transforms into [Co(NH3)6]3+ when exposed to air in a water-ammonia medium. Crystal data: triclinic crystal system, a = 10.7750(8) Å, b = 12.2843(9) Å, c = 19.6539(14) Å; α = 90.213(2)°, β = 99.910(2)°, γ = 114.737(1)°, V = 2319.1(3) Å3, space group , Z = 2, D x = 2.633 g/cm3.Original Russian Text Copyright © 2004 by I. V. Kalinina, Z. A. Starikova, F. M. Dolgushin, D. G. Samsonenko, and V. P. Fedin__________Translated from Zhurnal Strukturnoi Khimii, Vol. 45, No. 5, pp. 905–908, September–October, 2004.  相似文献   

9.
An individual crystalline compound Pb(UO2)2O2(OH)2·(H2O) was obtained by reaction of synthetic schoepite UO3·2.25H2O with an aqueous solution of lead(II) nitrate under hydrothermal conditions. The composition and structure of this compound were determined, and the processes of its dehydration and thermal decomposition were studied by chemical analysis, X-ray diffraction, IR spectroscopy, and thermography.  相似文献   

10.
The complex Na3(NH4)2[Ir(SO3)2Cl4]·4H2O was examined with single crystal X-ray diffraction and IR spectroscopy. Crystal data: a = 7.3144(4) Å, b = 10.0698(5) Å, c = 12.3748(6) Å, β = 106.203(1)°, V = 875.26(8) Å3, space group P21/c, Z = 2, d calc = 2.547 g/cm3. In the complex anion two trans SO 3 2? groups are coordinated to iridium through the S atom. The splitting of O-H bending vibrations of crystallization water molecules and N-H ones of the ammonium cation is considered in the context of different types of interactions with the closest neighbors in the structure.  相似文献   

11.
The structure of [Pb3(OH)4Co(NO2)3](NO3)(NO2)·2H2O is determined by single crystal X-ray diffraction. The crystallographic characteristics are as follows: a = 8.9414(4) Å, b = 14.5330(5) Å, c = 24.9383(9) Å, V = 3240.6(2) Å3, space group Pbca, Z = 8. The Co(III) atoms have a slightly distorted octahedral coordination formed by three nitrogen atoms belonging to nitro groups (Co–Nav is 1.91 Å) and three oxygen atoms belonging to hydroxyl groups (Co–Oav is 1.93 Å). The hydroxyl groups act as μ3-bridges between the metal atoms. The geometric characteristics are analyzed and the packing motif is determined.  相似文献   

12.
A new Co(III) complex of 1,2-cyclohexanedionedioxime and thiocarbamide with an SO 4 2? anion and solvation water molecules in the outer sphere has been synthesized and its structure has been defined. Orthorhombic crystals, a = 11.659(2) Å, b = 26.448(5) Å, c = 30.142(6) Å, V = 9295(3) Å 3, Z = 8, dcalc = 1.599 g/cm3, space group Pbca; final R index is 0.0578 for 8221 reflections with I > 2σ(I). In the octahedral Co(III) complex, two 1,2-cyclohexanedionedioxime residues lie in the equatorial plane, while two thiocarbamide molecules are in the axial plane. Intramolecular bonds: N-H…O and O-H…O type hydrogen bonds and π-π interactions that stabilize the complex cations. In crystal, the components are linked by N-H…O and O-H…O hydrogen bonds into a 3D framework.  相似文献   

13.
[Na(H2O)4][EuL4] · 0.775CH2Cl2 (I) has been synthesized by the reaction of Eu(NO3)3 · 6H2O with 1,3-bis(1,3-dimethyl-1H-pyrasol-4-yl)-1,3-propanedione (HL) in the presence of NaOH. Its crystal structure has been solved by X-ray diffraction analysis. Crystals are tetragonal; a = 16.2401(5) Å, c = 11.9113(4) Å, V= 3141.50(17) Å3, ρcalcd = 1.427 g/cm3, μ(MoK α) = 1.140 mm?1, space group P4/n, Z = 2. The structural units forming a crystal of compound I are [EuL4]? complex anions, [Na(H2O)4]+ cations, and CH2Cl2 molecules. The coordination polyhedron of the Eu atom is an Archimedean antiprism formed by the O atoms of four bidentate chelate ligands L?.  相似文献   

14.
Crystal structures of two modifications of a binuclear Pd2(μ-ac)2(acac)2 complex are studied at 150 K and 297 K (ac = acetate; acac = acetylacetonate). It is demonstrated that in both cases, the packing of the complexes can be considered as pseudohexagonal, the molecules forming infinite chains by interactions between chelate rings with the shortest contacts Pd...C γ ~ 3.3 Å.  相似文献   

15.
The structure of the salt Cs[Gd(H2O)4Re6Te8(CN)6]·4H2O (space group P-1, a = 9.436(5) Å, b = 12.365(7) Å, c = 15.187(8)Å, α = 89.104(10)°, β = 86.996(10)°, γ = 82.304(9)°) has been established by single crystal XRD. The structure of the compound features layers involving Gd3+ cations bound to cluster anions [Re6Te8(CN)6]4? through cyanide groups. The interlayer space contains cesium cations and crystallization water molecules.  相似文献   

16.
The system hydrogen peroxide–hexafluoroacetone sesquihydrate effectively oxidizes adamantane in the presence of VO(acac)2 to afford 64% of adamantan-1-ol in tert-butyl alcohol or 76% of adamantan-2-one in a mixture of acetic acid with pyridine.  相似文献   

17.
Single crystals of Mg pivalate hydrate, Mg(H2O)6(Piv)2 · 3H2O (HPiv = (CH3)3CCOOH) are synthesized and their structure is determined by X-ray diffraction method. The crystals are rhombic: a = 10.917(2) Å, b = 12.625(2) Å, c = 31.394(8) Å, Z = 8, space group Pbca, R 1 = 0.0525. The Mg atom has octahedral surrounding of the O atoms of water molecules (Mg-O 2.044–2.137 Å). The cationic chains of [Mg(H2O)6] 2+ lie in the voids of doubled network anionic layers of [(H2O)3(Piv)2] ∞∞ 2? . Inside the layer, the pivalate anions alternate with water molecules in the xy plane, being bonded to them by hydrogen bonds. The cationic chains and the anionic layers are united into layered packs by hydrogen bonds between coordinated water molecules and pivalate anions and between coordinated and crystal hydrate water molecules.  相似文献   

18.
The compound Rb3[NbO(C2O4)3]⋅2H2O (1) has been synthesized by two different methods and its exact chemical composition established. The niobium atom is heptacoordinated by oxygen atoms forming a distorted pentagonal bipyramid. Inspite of some similarities, the structure of 1 is not isotypic with the structure of (NH4)3[NbO(C2O4)3]⋅H2O.  相似文献   

19.
Aqueous solutions of La(CH3CO2)3, NaCH3CO2 and La(ClO4)3 were studied using Raman spectroscopy. In dilute NaCH3CO2 solution, acetate is fully hydrated and forms only minor amounts of ion pairs. The characteristic Raman bands are discussed and assigned. In fairly dilute La(ClO4)3 solutions, the La3+(aq) ion occurs as the nonahydrate. The separation of the carboxylate bands, νas – νs (Δ-value), in NaCH3CO2(cr) compared to La(CH3CO2)3·1.5H2O(cr) correlates with the bonding type of acetate which is “ionic” in the former but bidentate chelating/tridentate chelating in the latter. Other acetate bands such as the deformation mode of the CO2 moiety, δ CO2, and the two rocking vibrations (ρ), as well as the C–C stretch show marked differences in their band positions in NaCH3CO2(cr) compared to the ones in La(CH3CO2)3·1.5H2O(aq). In a ternary solution of La(CH3CO2)3/LaCl3 with a molar ratio La3+(aq): \( {\text{CH}}_{3} {\text{CO}}_{2}^{ - } \)(aq) = 3.87: 1.00), the bands of the bound acetate on La3+ were characterized and compared to those of fully hydrated acetate, \( {\text{CH}}_{3} {\text{CO}}_{2}^{ - } \left( {\text{aq}} \right) \). In this solution, almost all acetate is ligated to La3+ in a bidentate fashion and two complex species could be identified (molar ratios La3+: \( {\text{CH}}_{3} {\text{CO}}_{2}^{ - } \)  = 1:1 and 1:2, respectively). In La(CH3CO2)3 solutions in H2O and D2O strong acetato complexes are formed and the bands of the bound acetate were characterized and compared with the ones of the fully hydrated acetate modes. A dilution series down to 0.0037 mol·L?1 in La(CH3CO2)3(aq) and to 0.0150 mol·L?1 in La(CH3CO2)3(D2O) showed that two acetate complexes are formed in these solutions. Again, it was shown that in these solutions the bound acetates on La3+ exist as bidentate ligands. DFT frequencies of the acetate on clusters {La(OH2)7O2CCH3)}2+ and {La(OH2)5(O2CCH3)2}+ compared well with the measured values. By determining the ligation number, \( \bar{n} \), it can be established that in dilute solutions, below 0.04 mol·L?1, a complex with a 1:1 stoichiometry (La3+: \( {\text{CH}}_{3} {\text{CO}}_{2}^{ - } \)) exists in equilibrium with “free” acetate while in more concentrated solutions a 1:2 complex also forms. La3+(aq) hydrolysis is slight and very small equilibrium concentrations of CH3COOH were detected (C–C stretch at 893 cm?1). From quantitative Raman measurements, K 1 was determined to be 160 ± 10 at 22 °C.  相似文献   

20.
Crystals of Ba3[Co(Nta)2]2 · 10H2O (Nta3? is the ion of nitrilotriacetic acid) are obtained (monoclinic crystal system, a = 17.094(3), b = 13.1873(13), c = 21.490(3) Å, β = 98.457(18)°, Z = 4, space group I2/c). The crystal structure of the compound is determined by X-ray diffraction analysis. The crystals consist of the Ba2+ cations, water molecules, and [Co(Nta)2]3? anions in which the donor N and 2O atoms of each Nta3? ion are located at opposite faces of the coordination octahedron. The Co(1, 2) atoms are arranged in the inversion centers. The Ba atoms of the complexes form an intricate three-dimensional framework. One of the two crystallographically nonequivalent complexes binds eight Ba atoms, and another one binds six Ba atoms. The coordination number of the Ba(1) atoms (in the general position) is nine (three O atoms of water molecules and six O atoms of the carboxyl groups of five complexes), and that of the Ba(2) atoms (on the 2 axis) is 6 (two O atoms of water molecules and four O atoms of the carboxyl groups of four complexes).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号