首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study is made of the effects related to the formation of electrode jets in discharges in hydrogen and air at a current of 105–106 A, a current growth rate of 1010 A/s, an initial pressure of 0.1–4.0 MPa, and a discharge gap length of 5–40 mm. After secondary breakdown, jets are observed in a semitransparent discharge channel expanding with a velocity of (4–7)×102 m/s. The formation of shock waves in the interaction of the jets with the ambient gas and the opposite electrode is observed by the shadowgraphy method. Seventy microseconds after the beginning of the discharge, the pressure of the metal vapor plasma near the end of the tungsten cathode amounts to 177 MPa. The brightness temperature in this case is T=59×103 K, the average ion charge number is [`(m)] = 3.1\overline m = 3.1 , and the metal vapor density is n=5.3×1019 cm−3. After 90 μs, the average ion charge number and the metal vapor density near the anode end are [`(m)] = 2.6\overline m = 2.6 and n=7.4×1019 cm−3, respectively. Based on the experimental data, possible reasons for the abnormally high values of the total voltage drop near the electrodes (up to ∼1 kV) are discussed.  相似文献   

2.
周澜  吕国华  陈维  庞华  张谷令  杨思泽 《中国物理 B》2011,20(6):65206-065206
Polytetrafluoroethylene films are treated by room temperature helium atmospheric pressure plasma plumes, which are generated with a home-made single liquid electrode plasma device. After plasma treatment, the water contact angle of polytetrafluoroethylene film drops from 114°to 46°and the surface free energy increases from 22.0 mJ/m2 to 59.1 mJ/m2. The optical emission spectrum indicates that there are reactive species such as O2+ , O and He in the plasma plume. After plasma treatment, a highly crosslinking structure is formed on the film surface and the oxygen element is incorporated into the film surface in the forms of -C-O-C-, -C=O, and -O-C=O groups. Over a period of 10 days, the contact angle of the treated film is recovered by only about 10 , which indicates that the plasma surface modification is stable with time.  相似文献   

3.
S. Shkerin  S. Gormsen  M. Mogensen 《Ionics》2002,8(5-6):439-446
Pt electrodes with defined contact geometries were studied by using impedance spectroscopy. The specific polarisation conductivity per unit length of the three-phase boundary was determined. It is found to be 1 × 10−4 S·cm−1 at 977 °C in an atmosphere of “pure” hydrogen with an oxygen partial pressure of 10−20 atm at 1000 °C. Investigations carried out in an atmosphere of pure oxygen revealed a pronounced dependence of the polarisation conductivity on the electrode history. The polarisation conductivity was found to be in a range of 2 × 10−4 to 6.5 × 10−4 S·cm−1 at a temperature of 977 °C. It was possible to estimate the area of the electrolyte surface which takes part in the electrode reaction. The real exchange current density was determined.  相似文献   

4.
The adsorption and kinetic processes of the formation of gas bubbles passivating the surface during polarization of copper and graphite electrodes in 1% aqueous solution of sulfuric acid have been investigated. Three stages of the process related to the recharging of the double electric layer—adsorption accumulation of the gas escaping from the surface, the critical nucleation of the gas bubbles, and their subsequent growth—have been revealed, distinguished, and quantitatively estimated. It has been shown that potential leveling at the steady-state value specified by the Tafel equation is unambiguously associated with achievement of the limiting surface area screened by the gas bubbles for each particular current density. The surface diffusion constants D H = (1.5–4.4) × 10−4 and (0.1–3.8) × 10−5 cm2/s of hydrogen on copper and graphite, respectively, and D O = (1.8–4.5) × 10−7 cm2/s of oxygen on graphite during the motion toward the drain (the gas bubbles) have been calculated.  相似文献   

5.
Abstract

The energy shift of the He 11S0?21P1 transition, ΔE(n), can be used to determine the density, n, of He in bubbles in metals. A self-consistent band structure calculation for solid fcc He yields a linear relationship ΔE=C.n with C th=22 × 10?3 eV nm3. Systematic electron energy loss spectroscopy and transmission electron microscopy studies of He bubbles in Al for various He doses and temperatures result in Cexp=(24±8).10?3 eV nm3 in agreement with theory. The analysis is consistent with the assumption that dislocation loop punching is the dominant bubble growth mechanism during high-dose room temperature implantation. The application to He bubbles in Ni indicates a maximum He density of n=0.2 × 103 nm?3 for which He should be solid at room temperature.  相似文献   

6.
Oxide and silver paste were applied on the BaO-doped Bi2O3 electrolyte and their behavior was studied as a function of temperature and oxygen partial pressure. Interface resistance of most oxide/electrolyte were of the same order of magnitude with those of Ag paste/electrolyte in air (300–500°C). A high electrode capacitance of (0.8–1.7)×10?2 F/cm2 was observed for the silver electrode at 450°C in the PO2 region of 1–10?5 atm.  相似文献   

7.
8.
New solid electrolytes containing acetamide and lithium bioxalato borate (LiBOB) with different molar ratios have been investigated. Their melting points (Tm) are around 42 °C. The ionic conductivities and activation energies vary drastically below and above Tm, indicating a typical feature of phase transition electrolyte. The ionic conductivity of the LiBOB/acetamide electrolyte with a molar ratio of 1:8 is 5 × 10? 8 S cm? 1 at 25 °C but increases to 4 × 10? 3 S cm? 1 at 60 °C. It was found that anode materials, such as graphite and Li4Ti5O12, could not discharge and charge properly in this electrolyte at 60 °C due to the difficulty in forming a stable passivating layer on the anodes. However, a Li/LiFePO4 cell with this electrolyte can be charged properly after heating to 60 °C, but cannot be charged at room temperature. Although the LiBOB/acetamide electrolytes are not suitable for Li-ion batteries due to poor electrode compatibility, the current results indicate that a solid electrolyte with a slightly higher phase transition temperature than room temperature may find potential application in stationary battery for energy storage where the electrolyte is at high conductive liquid state at elevated temperature and low conductive solid state at low temperature. The interaction between acetamide and LiBOB in the electrolyte is also studied by Raman and FTIR spectroscopy.  相似文献   

9.
The hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) occurring at the Raney-Ni mesh electrode in 30 wt.-% aqueous KOH solution were studied in the absence (silent) and presence of ultrasound (408 kHz, ∼54 W, 100% acoustic amplitude) at different electrolyte temperatures (T = 25, 40 and 60 °C). Linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) experiments were performed to analyse the electrochemical behaviour of the Raney-Ni electrode under these conditions. Under silent conditions, it was found that the electrocatalytic activity of Raney-Ni towards the HER and the OER depends upon the electrolyte temperature, and higher current densities at lower overpotentials were achieved at elevated temperatures. It was also observed that the HER activity of Raney-Ni under ultrasonic conditions increased at low temperatures (e.g., 25 °C) while the ultrasonic effect on the OER was found to be insignificant. In addition, it was observed that the ultrasonic effect on both the HER and OER decreases by elevating the temperature. In our conditions, it is suggested that ultrasound enhances the electrocatalytic performance of Raney-Ni towards the HER due to principally the efficient gas bubble removal from the electrode surface and the dispersion of gas bubbles into the electrolyte, and this effect depends upon the behaviour of the hydrogen and oxygen gas bubbles in alkaline media.  相似文献   

10.
Abstract

The present study contributes some new aspects to the general understanding of the ion implantation behaviour of 3 common semiconductor materials, and of diffusion processes in these materials. Single crystals of Si, Ge, and GaAs were bombarded with Kr- or Xe-ions at energies of 40 or 500 keV and doses between 1011 and 2 × 1016 ions/cm2. Gas release measurements and Rutherford scattering of 1 MeV He+-ions combined with channeling were used to study bombardment damage (amorphization) and inert gas diffusion. At low bombardment doses (1011 ions/cm2) and energy (40 keV), no damage was observed and the gas release was compatible with volume diffusion resembling Group I and VIII behaviour. Hence, the pre-exponential terms, D 0, were low (range 10-5±1 cm2 sec?1) and the activation enthalpies, Δ H, were much lower than those of self-diffusion or of diffusion of Group III and V elements. The Δ H's for gas diffusion followed the relation Δ H = (1.05±0.1) × 10?3 Tm eV with the melting point, Tm , in °K. The mechanism of gas mobility might be the Turnbull dissociative mechanism. Rutherford scattering and channeling data indicated that part of the gas occupied lattice sites.

At higher doses, the bombarded layers turned amorphous. Channeling experiments showed a coincidence in temperatures for a gas release process different from the above one of volume diffusion, and recrystallization of the disordered layer to the single crystalline state. Both processes occurred in the temperature range 0.60 to 0.65 Tm . The gas release indicated a (partial) single jump character with implied Δ H's following the relation Δ H = (2.1±0.1) × 10?3 Tm eV. Contrary to previous results on oxides, this new gas release occurred at temperatures near to those or even above those of volume diffusion of the gas.

Due to the easy formation of an amorphous layer it was difficult to observe the retarded release (trapping of gas) that has been found in many materials at high gas and damage concentrations. However, in a separate series of experiments with 500 keV Kr-ions, a release retarded with respect to volume diffusion of the gas was observed in Si and Ge.  相似文献   

11.
Composites containing lithium-bromide dihydrates and a second phase, either the monohydrate or dispersed Al2O3 particles, exhibit an abrupt increase in the electrical conductivity at thedihydrate melting temperature Tm = 43°C. Although the conductivity at T >62 Tm is characteristic of a good liquid electrolyte -σ ≈ 0.1 mho cm-1 at 130°C with an activation energy EA = 13 kJ/mol and a Li+-ion transport number 0.9 ± 0.2, the composite pellet may be handled as a solid; it is brittle at 100°C. The possible significance of this finding for the design of high-power battery electrodes is indicated.  相似文献   

12.
Radiation-stimulated interfacial gas release in an Ag-glass thin-film system is investigated. It is established that under proton irradiation hydrogen accumulates in bubbles, which are the interfacial gas reservoirs, at the interface. The gas bubbles formed are studied and their parameters are determined by optical microinterferometry. It is shown that 15–50 μm in radius bubbles contain 2×109–2×1011 hydrogen molecules. Hydrogen is extracted from the reservoir by rupturing the thin-film dome of a bubble with a 2×1013 W·cm−2 laser beam. Zh. Tekh. Fiz. 69, 112–115 (February 1999)  相似文献   

13.
An electrode design with no use of three-phase boundary was investigated using palladium electrode. The hydrogen evolution rate of the palladium electrode cell using SrZr0.9Y0.1O3 − α electrolyte followed Faraday’s law up to 180 mA cm−2, and the anode and cathode overpotentials were significantly lower than those of a platinum electrode cell, suggesting that the palladium electrode is effective to improve the performance of the hydrogen-pumping cell using SrZrO3-based electrolyte. The rate-determining step (RDS) for electrode reaction was also investigated by changing the electrode morphology and hydrogen partial pressure, and it was suggested that the RDS of the anode is a reaction at electrode/electrolyte interface.  相似文献   

14.
Radiation damage to borosilicate glass has been studied using a high voltage electron microscope to simultaneously generate and image structural changes At low doses and dose rates (φ ? 5 × 1024 electrons m-2, F ? 5 × 1022 el m-2 s-1), ionic depletion generates a new crystalline phase rich in S1O2 For incubation doses exceeding 5 × 1024 electrons m-2, gas bubbles are observed High damage rates are necessary for bubble nucleation though not for their subsequent growth The critical nucleation flux increases rapidly with irradiation temperature, whereas the gas precipitation efficiency remains constant above 300 K.  相似文献   

15.
The kinetics of etching hydrogenated amorphous silicon by a hydrogen plasma has been studied by in-situ spectroscopic ellipsometry measurements. The formation of a hydrogen-rich sublayer is clearly emphasized. Its thickness increases from 7 to 27?nm when the temperature during the hydrogen-plasma treatment is raised from 100 to 250°C. This effect is interpreted by solving the differential equation for trap-limited hydrogen diffusion through a mobile surface. By assigning the thickness of this sublayer to the mean diffusion distance of hydrogen we determined values of the effective diffusion coefficient of hydrogen higher than 10?14?cm2s?1 with an activation energy of 0.22?eV. The density of hydrogen traps is found to decrease from 7.3 × 1018 to 4.5 × 1017?cm?3 as the temperature of the hydrogen treatment increases from 100 to 250°C with an activation energy of 0.43?eV. This effect is interpreted by a thermal equilibrium involving hydrogen transitions between shallow states and hydrogen-trapping sites.  相似文献   

16.
Study of the T-odd three-vector correlation in the emission of prompt neutrons from 235U fission by polarized cold neutrons has been continued at the facility MEPHISTO of the FRM II reactor (Technical University of Munich). The sought correlation was not found within experimental error of 2.3 × 10−5. The upper limit for the asymmetry coefficient has been set to |D n | < 6 × 10−5 at 99% confidence level, whereas for ternary fission correlation coefficient D α = (170±20) × 10−5. This limit casts doubt on a model that explains the three-vector correlation in ternary fission by the Coriolis mechanism. At the same time, five-vector correlation in the emission of prompt fission neutrons has been measured, which describes the rotation of the fissioning nucleus at the moment it breaks (ROT effect). At the angle 22.5° to the fission axis, the correlation coefficient was found to be (1.57 ± 0.20) × 10−4, while at the angle of 67.5° it is zero within the experimental uncertainty. The existence of ROT effect in the emission of prompt fission neutrons can be explained by the anisotropy of neutron emission in the rest frame of the fragment (fission fragments are aligned with respect to the axis of deformation of the fissioning nucleus), similar to the mechanism of ROT effect in the emission of prompt γ-rays.  相似文献   

17.
The wetting behavior of Al–Si–Mg alloys on Si3N4/Si substrates has been investigated using the sessile drop technique. Based on a Taguchi experiment design, the effect of the following processing parameters on the contact angle (θ) and surface tension (σLV) was studied: processing time and temperature, atmosphere (Ar and N2), substrate surface condition (with and without a silicon wafer), as well as the Mg and Si contents in the aluminium alloy. In nitrogen, non-wetting conditions prevail during the isothermal events while in argon a remarkable non-wetting to wetting transition leads to contact angles θ as low as 11±3° and a liquid surface tension σLV of 33± 10×10-5 kJ/m2. According to the multiple analysis of variance (Manova), the optimum conditions for minimizing the values of θ and σLV are as follows: temperature of 1100 °C, processing time of 90 min, argon atmosphere, no use of a silicon wafer, and the use of the Al-18% Mg-1% Si alloy. A verification test conducted under the optimized conditions resulted in a contact angle of θ=9±3° and a surface tension of σLV=29± 9×10-5 kJ/m2, both indicative of excellent wetting. PACS 68.03.Cd; 81.05.Bx; 68.08.Bc; 05.70.-a; 61.10.Nz  相似文献   

18.
The nucleon's strange electric and magnetic form factors G E s and G M s can be probed via parity-violating electron scattering. The HAPPEX Collaboration has made new measurements of the parity-violating asymmetry A PV in elastic scattering of 3GeV electrons off hydrogen and 4He targets with 〈θlab〉 ≈ 6.0° . For 4He the preliminary result is A PV = (+ 6.43±0.23(stat)±0.22(syst))×10-6 . For hydrogen the preliminary result is A PV = (- 1.60±0.12(stat)±0.05(syst))×10-6 . From these values we extract G s E = 0.004±0.014±0.013 at 〈Q 2〉 = 0.077 GeV/c^2 , and G s E +0.09G s M = 0.004±0.011±0.005 at 〈Q 2〉 = 0.109 GeV/c^2 , both consistent with zero, providing stringent new limits on the role of strange quarks in the vector structure of the nucleon.  相似文献   

19.
Oxide films, 7–10 µm thick, were produced on commercially pure titanium by plasma electrolytic oxidation in a sodium orthophosphate electrolyte using a pulsed unipolar current with frequency (f) and duty cycle (δ) varying within f = 0.1–10 kHz and δ = 0.8–0.2, respectively. The coatings comprised a mixture of an amorphous phase with nanocrystalline anatase and rutile phases, where the relative rutile content range was 17–25 wt%. Incorporation of phosphorus from the electrolyte into the coating in the form of PO2 , PO3 2– and PO4 3–, as demonstrated by EDX and FT-IR analyses, contributed to the formation of the amorphous phase. Residual stresses associated with the crystalline coating phase constituents were evaluated using the X-ray diffraction sin2 ψ method. It was found that, depending on the treatment parameters, internal direct and shear stresses in anatase ranged from–205 (±17) to–431 (±27) MPa and from–98 (±6) to–145 (±10) MPa, respectively, whereas the rutile structure is comparatively stress-free.  相似文献   

20.
A layered perovskite GdBaCuFeO5+x (GBCuF) was developed as a cathode material for intermediate-temperature solid oxide fuel cells based on a proton-conducting electrolyte of stable BaZr0.1Ce0.7Y0.2O3?δ (BZCY). The X-ray diffraction results showed that GBCuF was chemically compatible with BZCY after co-fired at 1,000 °C for 10 h. The thermal expansion coefficient of GBCuF, which showed a reasonably reduced value (15.1?×?10?6 K?1), was much closer to that of BZCY than the cobalt-containing conductor. The button cells of Ni–BZCY/BZCY/GBCuF were fabricated and tested from 500 to 700 °C with humidified H2 (~3 % H2O) as a fuel and ambient oxygen as the oxidant. A high open-circuit potential of 1.04 V, maximum power density of 414 mW cm?2, and a low electrode polarization resistance of 0.21 Ω cm2 were achieved at 700 °C, with calculated activation energy (E a) of 128 kJ mol?1 for the GBCuF cathode. The experimental results indicated that the layered perovskite GBCuF is a good candidate for cathode material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号