首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
大功率电子加速器光学性能的研究   总被引:4,自引:0,他引:4  
利用在SC程序基础上的改进程序对一种工业用大功率电子加速器的光学系统性能进行了研究.经过优化计算并给出了计算结果.  相似文献   

2.
To recover energy from the waste heat of aluminum reduction cells, a waste heat power generation system (WHPGS) with low boiling point working fluid based on Organic Rankine Cycle was proposed. A simplified model for the heat transfer around the walls of aluminum reduction cells and thermodynamic cycle was established. By using the model developed and coded in Matlab, thermal performance analysis of the system was conducted. Results show that the electrolyte temperature and the freeze ledge thickness in the cell can significantly affect the heat absorption of the working fluid in the heat exchange system on the walls. Besides, both the output power and the thermal efficiency of the power generation system increase with the system pressure. The output power and thermal efficiency of the system can also be affected by the type of working fluid used in the system. Working fluids for the best system performance under different output pressures were determined, based on the performance analysis. This WHPGS would be a good solution of energy-saving in aluminum electrolysis enterprises.  相似文献   

3.
有机朗肯循环发电技术是基于有机朗肯循环(Organic Rankine Cycle,ORC),利用低沸点有机工质,将低品位的余热资源转换为高品位的电能的先进技术,能够有效提高能源的利用率,减少能源损失.针对工业过程中大量中低温余热受到各种限制难以回收利用难题,全面综述了有机工质朗肯循环低温余热发电技术现状和进展,具体包...  相似文献   

4.
A loop thermosiphon thermal collector was developed for the waste heat recovery power generation with electric capacity of 500 W. The heat collector with heat transfer area of 0.159 m2 (500 mm width and 300 mm depth) was connected to the condenser with a shrunken heat transfer area by a loop. The thermal performance of the apparatus was declined when increasing the water filling rate to 90% as the working fluid occupied the internal volume. In the range of water filling rate between 30% and 60%, the effective thermal conductivity was around100 times of the conductivity of copper.  相似文献   

5.
为了深入研究低温余热发电系统用翅片管换热器的传热特性,文中建立了翅片管换热器计算模型,对工质R123在翅片管换热器内的传热性能进行数值模拟,比较管内工质R123在不同流速与温度时的换热特性,利用最小二乘法原理,对烟气侧和工质侧的换热关联式进行了拟合,得到了二者的换热准则方程,此外,利用实验方法对模拟结果进行验证。  相似文献   

6.
The Thermosyphon Rankine Engine (TSR) is a recent concept for power generation using solar or other available low grade heat sources. The basis of the engine is the modification of a heat pipe, with its excellent heat and mass transfer characteristics, to incorporate a turbine, thereby making the system into a Rankine Cycle Engine.The TSR is directed towards power production from solar ponds, geothermal energy and heat produced by solar collectors, as well as for waste heat utilisation for electrical power generation.A theoretical formulation and results from experiments on prototype units are presented. Based on the results, it is concluded that the TSR engine may play an important role for conversion into electrical energy of thermal energy produced by conventional solar collectors, geothermal sources and waste heat.  相似文献   

7.
Thermoelectric power generators require high-efficiency thermoelectric materials to transform waste heat into usable electrical energy. An efficient thermoelectric material should have high Seebeck coefficient and excellent electrical conductivity as well as low thermal conductivity. Graphene, the first truly 2D nanomaterial, exhibits unique properties which suit it for use in thermoelectric power generators, but its application in thermoelectrics is limited by the high thermal conductivity and low Seebeck coefficient resulting from its gapless spectrum. However, with the possibility of modification of graphene's band structure to enhance Seebeck coefficient and the reduction of its thermal conductivity, it is an exciting prospect for application in thermoelectric power generation. This article examines the electronic, optical, thermal, and thermoelectric properties of graphene systems. The factors that contribute to these material properties in graphene systems like charge carriers scattering mechanisms are discussed. A salient aspect of this article is a synergistic perspective on the reduction of thermal conductivity and improvement of Seebeck coefficient of graphene for a higher thermoelectric energy conversion efficiency. In this regard, the effect of graphene nanostructuring and doping, forming of structural defects, as well as graphene integration into a polymer matrix on its thermal conductivity and Seebeck coefficient is elucidated.  相似文献   

8.
The electrical and thermal characteristics of plasma-resistive furnace in the drying zone at a recycling manmade waste were studied. The dependences of power output in the drying zone at different specific electrical resistances of the charge were derived. It is shown that introduction of additional resistance heating in the drying zone reduces the load on plasmatorch, increasing the lifetime of electrodes.  相似文献   

9.
活性炭-甲醇吸附制冰机的循环特性分析   总被引:2,自引:0,他引:2  
所研究的吸附式制冰机以块状活性炭和甲醇为工质对,采用烟气加热。研究表明,对于本系统,双床循环较为合 适;双床循环中回热回质过程可以有效的改善吸附床的工作性能以及系统的热力完善度,并能将系统的制冷功率提高7% 到11%。在循环时间为50 min时,回热回质条件下制冷功率为2 kw左右,可以实现每小时制冰15 kg左右。  相似文献   

10.
We propose an efficient coherent power scaling scheme, the multichip vertical-external-cavity surface-emitting laser (VECSEL), in which the waste heat generated in the active region is distributed on multi-VECSEL chips such that the pump level at the thermal rollover is significantly increased. The advantages of this laser are discussed, and the development and demonstration of a two-chip VECSEL operating around 970 nm with over 19 W of output power is presented.  相似文献   

11.
简要地介绍了美国激光惯性约束聚变能源( LIFE ) 的研究现状与发展前景。基于美国国家点火装置( NIF ) 的近期进展,美国利弗莫尔实验室提出了激光惯性约束聚变能源设想,并开始了分解研究。设想用新型二极管泵浦固体激光器产生1.4~2.0 MJ 的激光能量,靶丸聚变增益25~30,打靶频率10~15Hz,实现350~500 MW聚变功率,相当于聚变中子源强1.3×1020 ~1.8×1020 n/s。以此驱动次临界裂变包层,使能量再倍增4~10 倍,实现1 GW电功率的输出。采用创新设计的燃料元件,包层可达到90%以上的燃耗深度,形成一个安全、无碳、燃料资源丰富、核废料少、可持续发展的新型核能源系统。In this paper the present study situation and prospect of the American laser-based Inertial Confinement Fusion Energy ( LIFE ) are briefly introduced. It is based on recent progress of National Inertial Facility ( NIF ) and related research have begun. On the assumption of using laser energy of 1.4 to 2.0 MJ, the target fusion gain G=25~30, the repetition rate 10 to 15 Hz, the fusion power of 350 to 500 MW or neutron source power of 1.3×1020 to 1.8×1020 n/s could be achieved. For a sub-critical fission blanket driven by this fusion neutrons power, energy multiplication M of 4~10 and several GW of thermal power could be obtained. By novel design on fuel pins, burnup more than 90% would be achieved for heavy metals in the blanket. Inertial Confinement Fusion-fission energy is a promising concept, which characterized by inherent safety, richness in nuclear fuel resources, minimization of nuclear waste, non-CO2 emitting ,and it is a sustainable energy source.  相似文献   

12.
Nitrogen thermal plasma generated by a non-transferred DC arc plasma torch was used to decompose tetrafluoromethane (CF4). In the thermal decomposition process, water was used as a chemical reactant source. Two kinds of water spray methods were compared: water spray directly to the arc plasma flame and indirectly to the reactor tube wall. Although the same operating conditions of input power, waste gas, and sprayed water flow rate were employed for each water spray methods, a relatively higher decomposition rate was achieved in the case of water spray to the reactor wall. In order to investigate the effects of water spraying direction on the thermal decomposition process, a numerical simulation on the thermal plasma flow characteristics was carried out considering water injection in the reactor. The simulation was performed using commercial fluid dynamics software of the FLUENT, which is suitable for calculating a complex flow. From the results, it was revealed that water spray to the reactor wall and use of a relatively small quantity of water are more effective methods for decomposition of CF4, because a sufficiently high temperature area and long reaction time can be maintained over large area.  相似文献   

13.
对一种狭缝式环形超声聚能器的径向振动特性进行了研究。基于机电类比原理,通过引入面积比系数,推出了聚能器的径向振动机电等效电路及频率方程;得出了其径向位移振幅放大系数表达式。通过数值计算,探讨了聚能器第1、2阶径向共振频率及振幅放大系数与其半径比的关系;分析了狭缝长度、角度及数目对聚能器振幅放大系数及共振频率的影响,并进行了有限元仿真。研究表明,聚能器的振幅放大系数随其半径比的变化存在极大值,并随狭缝数量、长度及宽度增加而增大;而其径向共振频率则随三者的增加而减小,理论与有限元仿真及实验结果符合较好。   相似文献   

14.
Low-quality heat is generally discarded for economic reasons; a low-cost energy conversion device considering price per watt, $/W, is required to recover this waste heat. Thin-film based thermoelectric devices could be a superior alternative for this purpose, based on their low material consumption; however, power generated in conventional thermoelectric device architecture is negligible due to the small temperature drop across the thin film. To overcome this challenge, we propose new device architecture, and demonstrate approximately 60 Kelvin temperature differences using a thick polymer nanocomposite. The temperature differences were achieved by separating the thermal path from the electrical path; whereas in conventional device architecture, both electrical charges and thermal energy share same path. We also applied this device to harvest body heat and confirmed its usability as an energy conversion device for recovering low-quality heat.  相似文献   

15.
Gas turbine exhaust is usually relatively clean, especially the exhaust from natural gas turbines. The use of such gases to improve the overall thermal efficiency of a steam power plant has the advantage of reducing the cost of cleaning the equipment and reducing the maintenance costs of the heat recovery equipment used in the application.In this paper, two proposals for recovering the waste energy of the exhaust gases from a gas turbine unit, fuelled by natural gas at south Baghdad Power Plant (Iraq) are discussed. The proposals cover improvements to the thermal efficiency of a steam power plant installed near the gas turbine unit. The first proposal is to use the exhaust gases to preheat the feed water at four feed water heaters, in order to increase the power output. This arises because of the savings in the amount of steam extracted at a different level used for preheating the feed water line. The second proposal is to use the thermal energy in the exhaust gases to reheat the extracted stream, at five points at a high thermal potential, to increase the thermal gain at the preheating feed water line. This avoids the complexity associated with rejection of the extracted steam. The first roposal shows that a 1.22–14.9% saving in fuel consumption is achievable and the overall thermal efficiency of the steam power plant becomes 29–34% (at different gas turbine plant loads). The second proposal shows that a 2.3–7.35% saving in fuel consumption can be attained and the corresponding thermal efficiency will be 30.3–32%.  相似文献   

16.
Modern thermal power plants are complex technological systems. Therefore, making informed decisions when studying them requires the use of mathematical modeling and nonlinear optimization methods for plant parameter. The most complex task is to solve a mixed optimization problem wherein a part of optimization parameters vary continuously, and the other can take only discrete (integer) values. An effective method is developed to solve a thermal power plant optimization problem with continuous and discrete parameters. The method suggests an iterative procedure for solving continuous nonlinear programming problems and discrete-continuous linear programming problems. For each iteration, we add new constraints obtained by linearizing nonlinear inequality constraints and the objective function of the initial problem to the system of inequality constraints of linear problem. The effectiveness of the proposed method is exemplified by the optimization of a combined cycle power plant with a mixture of working media (the STIG scheme). Design characteristics of heating surface of a waste heat recovery boiler represent the discrete parameters to be optimized. The research demonstrates a considerable reduction in computational effort compared to the branch and bound method.  相似文献   

17.
利用LNG冷能的混合工质中低温热力循环开拓研究   总被引:11,自引:1,他引:10  
为提高中低温余热回收动力系统性能,本文在常规混合工质热力循环(火用)分析基础上,提出了结合LNG冷能利用的新型混合工质热力循环。通过与LNG的有机结合,混合工质热力循环热效率提高14.5个百分点,(火用)效率达到53.6%。为进一步揭示效率提高的原因,我们比较了常规混合工质热力循环与LNG-混合工质热力循环的(火用)损失变化情况。结果表明:LNG-混合工质热力循环高效的关键在于循环平均放热温度的降低以及工质蒸发过程与冷凝过程换热的合理匹配。而LNG冷能的梯级利用则是系统具有较高(火用)效率的根本原因。  相似文献   

18.
Conventional thermoacoustic-piezoelectric (TAP) harvesters convert thermal energy, such as solar or waste heat energy, directly into electrical energy without the need for any moving components. The input thermal energy generates a steep temperature gradient along a porous medium. At a critical threshold of the temperature gradient, self-sustained acoustic waves are developed inside an acoustic resonator. The associated pressure fluctuations impinge on a piezoelectric diaphragm, placed at the end of the resonator. In this study, the TAP harvester is coupled with an auxiliary elastic structure in the form of a simple spring–mass system to amplify the strain experienced by the piezoelectric element. The auxiliary structure is referred to as a dynamic magnifier and has been shown in different areas to significantly amplify the deflection of vibrating structures. A comprehensive model of the dynamically magnified thermoacoustic-piezoelectric (DMTAP) harvester has been developed that includes equations of motions of the system?s mechanical components, the harvested voltage, the mechanical impedance of the coupled structure at the resonator end and the equations necessary to compute the self-excited frequencies of oscillations inside the acoustic resonator. Theoretical results confirmed that significant amplification of the harvested power is feasible if the magnifier?s parameters are properly chosen. The performance characteristics of experimental prototypes of a thermoacoustic-piezoelectric resonator with and without the magnifier are examined. The obtained experimental findings are validated against the theoretical results. Dynamic magnifiers serve as a novel approach to enhance the effectiveness of thermoacoustic energy harvested from waste heat by increasing the efficiency of their harvesting components.  相似文献   

19.
This study investigates the hybridization scenario of a single-flash geothermal power plant with a biomass-driven sCO2-steam Rankine combined cycle, where a solid local biomass source, olive residue, is used as a fuel. The hybrid power plant is modeled using the simulation software EBSILON®Professional. A topping sCO2 cycle is chosen due to its potential for flexible electricity generation. A synergy between the topping sCO2 and bottoming steam Rankine cycles is achieved by a good temperature match between the coupling heat exchanger, where the waste heat from the topping cycle is utilized in the bottoming cycle. The high-temperature heat addition problem, common in sCO2 cycles, is also eliminated by utilizing the heat in the flue gas in the bottoming cycle. Combined cycle thermal efficiency and a biomass-to-electricity conversion efficiency of 24.9% and 22.4% are achieved, respectively. The corresponding fuel consumption of the hybridized plant is found to be 2.2 kg/s.  相似文献   

20.
空气-相变蓄热装置在农作物干燥、烟气余热回收和建筑供暖等场合需求强烈.但是目前关于空气-相变蓄热装置的研究较少且大多为平板型.本研究在已有研究的基础上,针对多孔道扁管相变蓄热装置存在换热结构不合理和灌装率较低的缺点,使用数值模拟的方法研究了 4种结构的多孔道扁管相变蓄热装置的蓄热性能;通过改变扁管肋高度提升蓄热装置的灌...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号