首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We deal with the problem of minimizing the expectation of a real valued random function over the weakly Pareto or Pareto set associated with a Stochastic Multi-objective Optimization Problem, whose objectives are expectations of random functions. Assuming that the closed form of these expectations is difficult to obtain, we apply the Sample Average Approximation method in order to approach this problem. We prove that the Hausdorff–Pompeiu distance between the weakly Pareto sets associated with the Sample Average Approximation problem and the true weakly Pareto set converges to zero almost surely as the sample size goes to infinity, assuming that our Stochastic Multi-objective Optimization Problem is strictly convex. Then we show that every cluster point of any sequence of optimal solutions of the Sample Average Approximation problems is almost surely a true optimal solution. To handle also the non-convex case, we assume that the real objective to be minimized over the Pareto set depends on the expectations of the objectives of the Stochastic Optimization Problem, i.e. we optimize over the image space of the Stochastic Optimization Problem. Then, without any convexity hypothesis, we obtain the same type of results for the Pareto sets in the image spaces. Thus we show that the sequence of optimal values of the Sample Average Approximation problems converges almost surely to the true optimal value as the sample size goes to infinity.  相似文献   

2.
In general Banach spaces, we consider a vector optimization problem (SVOP) in which the objective is a set-valued mapping whose graph is the union of finitely many polyhedra. We establish some results on structure and connectedness of the weak Pareto solution set, Pareto solution set, weak Pareto optimal value set and Pareto optimal value set of (SVOP). In particular, we improve and generalize Arrow, Barankin and Blackwell’s classical results on linear vector optimization problems in Euclidean spaces.  相似文献   

3.
In general normed spaces,we consider a multiobjective piecewise linear optimization problem with the ordering cone being convex and having a nonempty interior.We establish that the weak Pareto optimal solution set of such a problem is the union of finitely many polyhedra and that this set is also arcwise connected under the cone convexity assumption of the objective function.Moreover,we provide necessary and suffcient conditions about the existence of weak(sharp) Pareto solutions.  相似文献   

4.
The solution concepts of the fuzzy optimization problems using ordering cone (convex cone) are proposed in this paper. We introduce an equivalence relation to partition the set of all fuzzy numbers into the equivalence classes. We then prove that this set of equivalence classes turns into a real vector space under the settings of vector addition and scalar multiplication. The notions of ordering cone and partial ordering on a vector space are essentially equivalent. Therefore, the optimality notions in the set of equivalence classes (in fact, a real vector space) can be naturally elicited by using the similar concept of Pareto optimal solution in vector optimization problems. Given an optimization problem with fuzzy coefficients, we introduce its corresponding (usual) optimization problem. Finally, we prove that the optimal solutions of its corresponding optimization problem are the Pareto optimal solutions of the original optimization problem with fuzzy coefficients.  相似文献   

5.
求多目标优化问题Pareto最优解集的方法   总被引:1,自引:0,他引:1  
主要讨论了无约束多目标优化问题Pareto最优解集的求解方法,其中问题的目标函数是C1连续函数.给出了Pareto最优解集的一个充要条件,定义了α强有效解,并结合区间分析的方法,建立了求解无约束多目标优化问题Pareto最优解集的区间算法,理论分析和数值结果均表明该算法是可靠和有效的.  相似文献   

6.
Computing shortest paths with two or more conflicting optimization criteria is a fundamental problem in transportation and logistics. We study the problem of finding all Pareto-optimal solutions for the multi-criteria single-source shortest-path problem with nonnegative edge lengths. The standard approaches are generalizations of label-setting (Dijkstra) and label-correcting algorithms, in which the distance labels are multi-dimensional and more than one distance label is maintained for each node. The crucial parameter for the run time and space consumption is the total number of Pareto optima. In general, this value can be exponentially large in the input size. However, in various practical applications one can observe that the input data has certain characteristics, which may lead to a much smaller number—small enough to make the problem efficiently tractable from a practical viewpoint. For typical characteristics which occur in various applications we study in this paper whether we can bound the size of the Pareto set to a polynomial size or not. These characteristics are also evaluated (1) on a concrete application scenario (computing the set of best train connections in view of travel time, fare, and number of train changes) and (2) on a simplified randomized model. It will turn out that the number of Pareto optima on each visited node is restricted by a small constant in our concrete application, and that the size of the Pareto set is much smaller than our worst case bounds in the randomized model. A preliminary short version of this paper appeared in the Proceedings of the 5th Workshop on Algorithm Engineering (WAE 2001), LNCS 2141, Springer Verlag, pp. 185–197 (2001) under the title “Pareto shortest paths is often feasible in practice.”  相似文献   

7.
A parametric algorithm for identifying the Pareto set of a biobjective integer program is proposed. The algorithm is based on the weighted Chebyshev (Tchebycheff) scalarization, and its running time is asymptotically optimal. A number of extensions are described, including: a technique for handling weakly dominated outcomes, a Pareto set approximation scheme, and an interactive version that provides access to all Pareto outcomes. Extensive computational tests on instances of the biobjective knapsack problem and a capacitated network routing problem are presented.  相似文献   

8.
Real-world applications of multi-objective optimization often involve numerous objective functions. But while such problems are in general computationally intractable, it is seldom necessary to determine the Pareto optimal set exactly. A significantly smaller computational burden thus motivates the loss of precision if the size of the loss can be estimated. We describe a method for finding an optimal reduction of the set of objectives yielding a smaller problem whose Pareto optimal set w.r.t. a discrete subset of the decision space is as close as possible to that of the original set of objectives. Utilizing a new characterization of Pareto optimality and presuming a finite decision space, we derive a program whose solution represents an optimal reduction. We also propose an approximate, computationally less demanding formulation which utilizes correlations between the objectives and separates into two parts. Numerical results from an industrial instance concerning the configuration of heavy-duty trucks are also reported, demonstrating the usefulness of the method developed. The results show that multi-objective optimization problems can be significantly simplified with an induced error which can be measured.  相似文献   

9.
10.
New hybrid methods for approximating the Pareto frontier of the feasible set of criteria vectors in nonlinear multicriteria optimization problems with nonconvex Pareto frontiers are considered. Since the approximation of the Pareto frontier is an ill-posed problem, the methods are based on approximating the Edgeworth-Pareto hull (EPH), i.e., the maximum set having the same Pareto frontier as the original feasible set of criteria vectors. The EPH approximation also makes it possible to visualize the Pareto frontier and to estimate the quality of the approximation. In the methods proposed, the statistical estimation of the quality of the current EPH approximation is combined with its improvement based on a combination of random search, local optimization, adaptive compression of the search region, and genetic algorithms.  相似文献   

11.
In the present paper the fuzzy linear optimization problem (with fuzzy coefficients in the objective function) is considered. Recent concepts of fuzzy solution to the fuzzy optimization problem based on the level-cut and the set of Pareto optimal solutions of a multiobjective optimization problem are applied. Chanas and Kuchta suggested one approach to determine the membership function values of fuzzy optimal solutions of the fuzzy optimization problem, which is based on calculating the sum of lengths of certain intervals. The purpose of this paper is to determine a method for realizing this idea. We derive explicit formulas for the bounds of these intervals in the case of triangular fuzzy numbers and show that only one interval needs to be considered.  相似文献   

12.
Zhe Chen 《Applicable analysis》2013,92(12):2457-2467
In this article, we investigate the nonemptiness and compactness of the weak Pareto optimal solution set of a multiobjective optimization problem with functional constraints via asymptotic analysis. We then employ the obtained results to derive the necessary and sufficient conditions of the weak Pareto optimal solution set of a parametric multiobjective optimization problem. Our results improve and generalize some known results.  相似文献   

13.
We consider a multicriteria equilibrium programming problem including, as special cases, the mathematical programming problem, the problem of finding a saddle point, the multicriteria problem of finding a Pareto point, the minimization problem with an equilibrium choice of an admissible set, etc. We suggest a continuous version of the extragradient method with prediction and analyze its convergence.  相似文献   

14.
The Colombian coffee supply network, managed by the Federación Nacional de Cafeteros de Colombia (Colombian National Coffee-Growers Federation), requires slimming down operational costs while continuing to provide a high level of service in terms of coverage to its affiliated coffee growers. We model this problem as a biobjective (cost-coverage) uncapacitated facility location problem (BOUFLP). We designed and implemented three different algorithms for the BOUFLP that are able to obtain a good approximation of the Pareto frontier. We designed an algorithm based on the Nondominated Sorting Genetic Algorithm; an algorithm based on the Pareto Archive Evolution Strategy; and an algorithm based on mathematical programming. We developed a random problem generator for testing and comparison using as reference the Colombian coffee supply network with 29 depots and 47 purchasing centers. We compared the algorithms based on the quality of the approximation to the Pareto frontier using a nondominated space metric inspired on Zitzler and Thiele's. We used the mathematical programming-based algorithm to identify unique tradeoff opportunities for the reconfiguration of the Colombian coffee supply network. Finally, we illustrate an extension of the mathematical programming-based algorithm to perform scenario analysis for a set of uncapacitated location problems found in the literature.  相似文献   

15.
The set covering problem has many diverse applications to problems arising in crew scheduling, facility location and other business areas. Since the problem is known to be hard to solve optimally, a number of approximate (heuristic) approaches have been designed for it. These approaches (with one exception) divide into two main groups, greedy heuristics and dual saturation heuristics. We use the concept of a Pareto optimal dual solution to show that an arbitrary dual saturation heuristic has the same worst-case performance guarantee as the two best known heuristics of that type. Moreover, this poor performance level is always attainable by those two heuristics.  相似文献   

16.
In this paper a committee decision-making process of a convex Lagrange decomposable multi-objective optimization problem, which has been decomposed into various subproblems, is studied. Each member of the committee controls only one subproblem and attempts to select the optimal solution of this subproblem most desirable to him, under the assumption that all the constraints of the total problem are satisfied. This procedure leads to a new solution concept of a Lagrange decomposable multi-objective optimization problem, called a preferred equilibrium set. A preferred equilibrium point of a problem, for a committee, may or may not be a Pareto optimal point of this problem. In some cases, a non-Pareto optimal preferred equilibrium point of a problem, for a committee, can be considered as a special type of Pareto optimal point of this problem. This fact leads to a generalization of the Pareto optimality concept in a problem.  相似文献   

17.
《Optimization》2012,61(6):545-561
In this article we consider the boolean optimization problem of finding the set of Pareto optimal solutions. The vector objectives are the positive cuts of linear functions to the non-negative semi-axis. Initial data are subject to perturbations, measured by the l 1-norm in the parameter space of the problem. We present the formula expressing the extreme level (stability radius) of such perturbations, for which a particular solution remains Pareto optimal.  相似文献   

18.
Decomposition based multi-objective evolutionary algorithm (MOEA/D) has been proved to be effective on multi-objective optimization problems. However, it fails to achieve satisfactory coverage and uniformity on problems with irregularly shaped Pareto fronts, like the reservoir flood control operation (RFCO) problem. To enhance the performance of MOEA/D on the real-world RFCO problem, a Pareto front relevant (PFR) decomposition method is developed in this paper. Different front the decomposition method in the original MOEA/D which is based on a unique reference point (i.e. the estimated ideal point), the PFR decomposition method uses a set of reference points which are uniformly sampled from the fitting model of the obtained Pareto front. As a result, the PFR decomposition method can provide more flexible adaptation to the Pareto front shapes of the target problems. Experimental studies on benchmark problems and typical RFCO problems at Ankang reservoir have illustrated that the proposed PFR decomposition method significantly improves the adaptivity of MOEA/D to the complex Pareto front shape of the RFCO problem and performs better both in terms of coverage and uniformity.  相似文献   

19.
An approach to constructing a Pareto front approximation to computationally expensive multiobjective optimization problems is developed. The approximation is constructed as a sub-complex of a Delaunay triangulation of a finite set of Pareto optimal outcomes to the problem. The approach is based on the concept of inherent nondominance. Rules for checking the inherent nondominance of complexes are developed and applying the rules is demonstrated with examples. The quality of the approximation is quantified with error estimates. Due to its properties, the Pareto front approximation works as a surrogate to the original problem for decision making with interactive methods.  相似文献   

20.
Pareto local search (PLS) methods are local search algorithms for multi-objective combinatorial optimization problems based on the Pareto dominance criterion. PLS explores the Pareto neighbourhood of a set of non-dominated solutions until it reaches a local optimal Pareto front. In this paper, we discuss and analyse three different Pareto neighbourhood exploration strategies: best, first, and neutral improvement. Furthermore, we introduce a deactivation mechanism that restarts PLS from an archive of solutions rather than from a single solution in order to avoid the exploration of already explored regions. To escape from a local optimal solution set we apply stochastic perturbation strategies, leading to stochastic Pareto local search algorithms (SPLS). We consider two perturbation strategies: mutation and path-guided mutation. While the former is unbiased, the latter is biased towards preserving common substructures between 2 solutions. We apply SPLS on a set of large, correlated bi-objective quadratic assignment problems (bQAPs) and observe that SPLS significantly outperforms multi-start PLS. We investigate the reason of this performance gain by studying the fitness landscape structure of the bQAPs using random walks. The best performing method uses the stochastic perturbation algorithms, the first improvement Pareto neigborhood exploration and the deactivation technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号