首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
草酰氯一价正离子构象及其碳—碳键反应活性的理论研究   总被引:1,自引:0,他引:1  
沈红玉  孙成科  李宗和 《化学学报》2003,61(8):1220-1225
用密度泛函方法BHandHLYP在6-311+G(d)和6-311+G(2df)水平上对草酰氯 的一价正离子[(ClCo)_2~+]作了构象分析,结果表明,(ClCo)_2~+具有平面 反式和交叉式两种稳定构象,交叉构象存在超共轭现象,此外,对草酰氯离子、中 性分子各解离通道初级反应的Gibbs自由能的计算,发现草酰氯离子C—C键解离通 道的反应活性大于中性分子,对该通道进一步做了反应机理研究,证实了热力学结 论,并且与实验相一致,对草酰氯离子的振动频率和键耦合常数的研究表明其碳— 碳键解离具有选键性。  相似文献   

2.
Although numerous morphologies of MnO nanostructures have been reported, an exact structural analysis and mechanistic study has been lacking. In the present study, the formation of regular MnO octapods was demonstrated in a simple procedure, comprising the thermal decomposition of manganese oleate. Because of their structural uniformity, an ideal three‐dimensional model was successfully constructed. The eight arms protruded from the cubic center with tip angles of 38° and surface facets of {311} and {533} with rounded edges. The concentrations of oleate and chloride ions were the determining factors for the octapod formation. Selective coordination of the oleate ions to the {100} faces led to edge growth along the <111> direction, which was then limited by the chloride ions bound to the high‐index surface facets. These structural and mechanistic analyses should be helpful for understanding the complex nanostructures and for tuning their structure‐related properties.  相似文献   

3.
Results of ab initio self‐consistent‐field and density functional theory calculations of the gas‐phase structure, acidity (free energy of deprotonation, ΔG0), and aromaticity of tetrathiosquaric acid (3,4‐dithiohydroxy‐3‐cyclobutene‐1,2‐dithione, H2C4S4) are reported. The global minimum found on the potential energy surface of tetrathiosquaric acid presents a planar conformation. The ZZ isomer was found to have the lowest energy among the three planar conformers and the ZZ and ZE isomers are very close in energy. The optimized geometric parameters exhibit a bond length equalization relative to reference compounds, cyclobutanedithione, and cyclobutenedithiol. The computed aromatic stabilization energy by homodesmotic reaction is −18.4 (MP2(fu)/6‐311+G**//RHF/6‐311+G**) and −15.1 kcal/mol (B3LYP//6‐311+G**// B3LYP/6‐311+G**). The aromaticity of tetrathiosquaric acid is indicated by the calculated diamagnetic susceptibility exaltation (Λ) −11.77 (CSGT(IGAIM)‐RHF/6‐311+G**// RHF/6‐311+G**) and −18.08 (CSGT(IGAIM)‐B3LYP/6‐311+G**// B3LYP/6‐311+G**). Thus, tetrathiosquaric acid fulfils the geometric, energetic and magnetic criteria of aromaticity. The most reliable theoretical gas‐phase acidities are $\Delta G^{0}_{1(298\mathrm{K})}=303.7$ and $\Delta G^{0}_{2(298\mathrm{K})}=394.1$ kcal/mol. Hence, tetrathiosquaric acid is a stronger acid than squaric acid (3,4‐dihydroxy‐3‐ cyclobutene‐1,2‐dione, H2C4O4). Comparisons of the computed results of tetrathiosquaric acid with squaric acid have also been made. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 78: 443–449, 2000  相似文献   

4.
The conformers of cycloheptane through cyclodecane have been examined at the B3LYP/6-311+G* and MP2/6-311+G* theoretical levels, with some additional calculations at the CCD/6-311+G* and CCSD(T)/6-311++G** levels. With cyclooctane, B3LYP predicts that the boat-chair and crown conformers have similar energies, whereas MP2 and CCSD(T) predict that the crown conformer is 2 kcal/mol higher in energy. The latter is in agreement with the electron diffraction data. With cyclononane, B3LYP predicts that two of the higher-energy conformers found in molecular mechanics calculations should convert to one of the lower-energy conformers. However, MP2/6-311+G* optimizations find them to be true minima on the potential energy surface. B3LYP systematically predicts larger C-C-C bond angles for these compounds than either MP2 or CCD. The results of molecular mechanics MM4 calculations are generally in good agreement with those obtained using MP2.  相似文献   

5.
Density functional methods have been employed to characterize the gas phase conformations of selenocysteine. The 33 stable conformers of selenocysteine have been located on the potential energy surface using density functional B3LYP/6‐31+G* method. The conformers are analyzed in terms of intramolecular hydrogen bonding interactions. The proton affinity, gas phase acidities, and bond dissociation energies have also been evaluated for different reactive sites of selenocysteine for the five lowest energy conformers at B3LYP/6‐311++G*//B3LYP/6‐31+G* level. Evaluation of these intrinsic properties reflects the antioxidant activity of selenium in selenocysteine. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

6.
Density functional theory (DFT) calculations have been performed to investigate the gas-phase conformations of serine and its three related ions (serineH(+), serine(-), and serine(2-)). The full ensemble of possible conformations, 324 conformations for serine, 108 for serineH(+), 162 for serine(-) and 54 for serine(2-), were first surveyed at B3LYP/6-31G level, and then the obtained unique conformations were further refined at B3LYP/6-311+G level. From full optimizations, 74 unique conformations for seine, 14 for serineH(+), 11 for serine(-), and 4 for serine(2-) were located, and their relative energies were also determined at B3LYP/6-311+G level. Atoms in molecules (AIM) analysis was carried out to establish rigorous definition of hydrogen bonds. Six types of intramolecular H-bonds in conformers of serine, six types in serineH(+), three types in serine(-), and two types in serine(2-) were identified within the framework of AIM theory and their relative strengths were determined based on topological properties at bond critical points (BCPs) of H-bonds. The intramolecular H-bonds were demonstrated to play an important role in deciding the relative stability of conformations of amino acids and the related ions. The enthalpies and Gibbs free energies of protonation and deprotonation reactions of serine and its related ions were calculated at B3LYP/6-311+G//B3LYP/6-31G, and B3LYP/6-311+G//B3LYP/6-311+G level. The calculated results are both in excellent agreement with the experimental data. We demonstrate in this study that B3LYP is an efficient and accurate method to predict the thermochemical and structural parameters of amino acids and the related ions.  相似文献   

7.
The alkylation of 4-methoxymethyl-gamma-butyrolactone enolate with methyl chloride was studied at the B3LYP/6-31+G* level. Conformer search of the free enolate gave 15 unique conformers within 5.39 kcal/mol. The transition structures for both anti- and syn-attacks of methyl chloride on these 15 conformers were located. In all cases, the anti-transition structures are more stable than the corresponding syn-ones. The alkylation of gamma-valerolactone was studied at the MP2, B3LYP, and HF levels of theory with the 6-31+G* basis set in the presence of Li+ and dimethyl ether molecules. Basis set effects were also examined by the comparison of the MP2 results with the 6-31+G*, 6-31+G**, and 6-311+G** basis sets in one case. This study shows that the main source of the anti-selectivity of 4-substituted gamma-butyrolactones is eclipsing strain in the syn-transition structures.  相似文献   

8.
The aim of this work was to estimate the proton and sodium cation affinities of harpagide (Har), an iridoid glycoside responsible for the antiinflammatory properties of the medicinal plant Harpagophytum. Monte Carlo conformational searches were performed at the semiempirical AM1 level to determine the most stable conformers for harpagide and its protonated and Na+-cationized forms. The 10 oxygen atoms of the molecule were considered as possible protonation and cationization sites. Geometry optimizations were then refined at the DFT B3LYP/6-31G level from the geometries of the most stable conformers found. Final energetics were obtained at the B3LYP/6-311+G(2d,2p)//B3LYP/6-31G level. The proton and sodium ion affinities of harpagide have been estimated at 223.5 and 66.0 kcal/mol, respectively. Since harpagide mainly provides HarNa+ ions in electrospray experiments, the DeltarG298 associated with the reaction of proton/sodium exchange between Har and methanol, MeOHNa+ + HarH+ --> MeOH2+ + HarNa+ (1), has been calculated; it has been estimated to be 1.9 kcal/mol. Complexing a methanol molecule to each reagent and product of reaction 1 makes the reaction become exothermic by 1.7 kcal/mol. These values are in the limit of the accuracy of the method and do not allow us to conclude definitely whether the reaction is endo- or exothermic, but, according to these very small values, the cation exchange reaction is expected to proceed easily in the final stages of the ion desolvation process.  相似文献   

9.
The infrared (3200-30 cm(-1) spectra of gaseous and solid and the Raman spectra of liquid (3200-30 cm(-1), with quantitative depolarization values, and solid vinyldichlorosilane, CH2=CHSiHCl2, have been recorded. Both the gauche and the cis conformers have been identified in the fluid phases. Variable temperature (105-150 degrees C) studies of the infrared spectra of the sample dissolved in liquid krypton have been carried out. From these data the enthalpy difference has been determined to be 20 +/- 5 cm(-1) (235 +/- 59 J mol(-1) with the gauche conformer the more stable rotamer. It was not possible to obtain a single conformer in the solid even with repeated annealing of the sample. The experimental enthalpy difference is in agreement with the prediction from MP2/6-311 + G(2d,2p) ab initio calculations with full electron correlation. However, when smaller basis sets, i.e. 6-31G(d) and 6-311 + G(d,p) were utilized the cis conformer was predicted to be the more stable form. Complete vibrational assignments are proposed for both conformers based on infrared contours, relative infrared and Raman intensities, depolarization values and group frequencies, which are supported by normal coordinate calculations utilizing the force constants from ab initio MP2/6-31G(d) calculations. From the frequencies of the Si-H stretches, the Si-H bond distance of 1.474 A has been determined for both the gauche and the cis conformers. Complete equilibrium geometries have been determined for both rotamers by ab initio calculations employing the 6-31G(d), 6-311 + G(d,p) and 6-311 + (2d,2p) basis sets at level of Hartree-Fock (RHF) and/or Moller Plesset to the second order (MP2) with full electron correlation. The potential energy terms for the conformer interconversion have been obtained from the MP2/6-31G(d) calculations. The results are discussed and compared with those obtained for some similar molecules.  相似文献   

10.
The infrared (3500-30 cm(-1)) spectra of gaseous and solid and the Raman (3500-200 cm(-1)) spectra of the liquid with quantitative depolarization ratios and solid trans-3-chloropropenoyl chloride (trans-ClCHCHCClO) have been recorded. These data indicate that both the anti (carbonyl bond trans to the carbon-carbon double bond) and syn conformers are present in the fluid states but only the anti conformer is present in the crystalline state. The mid-infrared spectra of the sample dissolved in liquid xenon as a function of temperature (-55 to -100 degrees C) have been recorded. Utilizing conformer pairs at 870 and 725 cm(-1), 1215 and 1029 cm(-1), and 1215 and 1228 cm(-1), the enthalpy difference has been determined to be 136+/-5 cm(-1) (389+/-14 cal mol(-1)) with the anti conformer the more stable form. Optimized geometries and conformational stabilities were obtained from ab initio calculations at the levels of RHF/6-31G(d), MP2/6-31G(d), MP2/6-311 + + G(d,p), MP2/6-311 + + G(2d,2p) and MP2/6-311 + + G(2df,2pd) with only the latter two calculations predicting the anti rotamer to be the more stable form. The vibrational frequencies, harmonic force constants and infrared intensities were obtained from the MP2/6-31G(d) calculations, whereas the Raman activities and depolarization values were obtained from the RHF/6-31G(d) calculations. The spectra are interpreted in detail and the results are compared with those obtained for some related molecules.  相似文献   

11.
Postulated conformers of trifluoromethylated β-aminoenones stabilized by intramolecular NH?O and N?HO bonds were studied by IR and NMR spectroscopy and evaluated with quantum chemical calculations (B3LYP/6-311+G(d,p), MP2/6-311+G(d,p)//B3LYP/6-311+G(d,p) and MP2/6-31G(d,p)) and NBO analysis. The influence of the nature of EWG, substituents at the nitrogen atom and double bond, and of orbital interactions of heteroatoms and double bonds in these structures on the proton affinity of basic and acid centers, strength of hydrogen bonds, and the energy of tautomeric transfers is discussed. The theoretical results agree satisfactorily with the experimental observations.  相似文献   

12.
Geometries and binding energies are predicted at B3LYP/6-311+G* level for the adenine–BX3 (X=F,Cl) systems and four conformers with no imaginary frequencies have been obtained for both adenine–BF3 and adenine–BCl3, respectively, and single energy calculations using much larger basis sets (6-311+G(2df,p)) and aug-cc-pVDZ were carried out as well. The most stable conformer is BF3 or BCl3 connected to N3 of adenine and with the stabilization energy of 22.55 or 20.59 kcal/mol at B3LYP/6-311+G* level (BSSE corrected). The analyses for the combining interaction between BX3 and adenine with natural bond orbital method (NBO) and the atom-in-molecules theory (AIM) have been performed. The results indicate that all the conformers were formed with σ–p type interactions between adenine and BX3, in which pyridine-type nitrogen or nitrogen atom of amino group offers its lone pair electron to the empty p orbital of boron atom and the concomitances of charge transference from adenine to BX3 were occurred. Frequency analysis suggested that the stretching vibration of BX3 underwent a red shift in complexes. Adenine–BF3 complex was more stable than adenine–BCl3 although the distance of B–N is shorter in the later.  相似文献   

13.
于芳  王海军 《化学研究》2009,20(3):88-92,97
采用B3LYP/6—311+G^+方法对鸟嘌呤-尿素复合物氢键相互作朋体系进行了研究,并对该复合物的几何构型及结合能(BSSE)进行了计算.此外,采用从静电势导出原子净电荷的chelpg方法分析了体系中的电荷转移和利用分子中的原子理论(AIM)方法对相互作用的本质进行了分析.结果一共得到五个稳定的复合物构型,其中A5是最稳定的,结合能为-73.95kJ/mol.  相似文献   

14.
The conformational analysis of nitrilotriacetamide has been carried out computationally, at both the semi‐empirical AM1 and density functional theory (DFT) (B3LYP/6‐31+G*) levels of theory. The lowest‐energy conformation predicted with the Monte Carlo search method, using the AM1 model, has two amide functionalities aligned on the same side; however, the DFT calculations at B3LYP/6‐31+G* predicted the global minimum with all three acetamide functionalities on the same side in the gas phase. In the aqueous phase, the DFT results predicted the orientations of amides similar to that of the reported crystal structure. The rotation barriers to transition to different low‐energy conformers of nitrilotriacetamide are lower in energy (5.0 kcal/mol) in water. The molecular electrostatic isopotentials (MESP) generated for the selected conformers at DFT level show that the nitrilotriacetamide could interact more effectively with the sodium chloride surface than that of its monomeric unit nitrilomonoacetamide. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

15.
Computational and experimental determinations were carried out in parallel on the conformational probability of N-Acetyl-Phenylalanine-NH2 (NAPA). Ab initio computations were completed at the BLYP/6-311G(df,p), B3LYP/6-31G(d), B3LYP/6-31G(d,p), and B3LYP/6-31+G(d) levels of theory, labeled L/61fp, B/6, B/6p, and B/6+, respectively. Three experimentally identified conformers were compared with theoretical data, confirming their identities as the betaLanti, gammaLgauche+, and gammaLgauche- (BACKBONESIDECHAIN) conformers. Evidence comes from matching experimental and theoretical data for all three constituent N-H stretches of NAPA, with a Delta(Experimental-Theoretical) = approximately 1-3 cm(-1), approximately 0-5 cm(-1), and approximately 1-6 cm(-1), at the L/61fp and B/6+ levels, respectively. Corrected-ZPE relative energies were computed to be 0.14, 0.00, 0.26 and 0.00, 0.67, 0.57 (kcal*mol(-1)) for the betaLanti, gammaLgauche+, and gamma(Lgauche- conformers, respectively, at the L/61fp and B/6+ levels, respectively. The MP2/6-31+G(d) level of theory was subsequently found to give similar relative energies. Characterization of the intramolecular interactions responsible for red and blue shifting of the N-H stretches showed the existence of the following intramolecular interactions: C=O[i]- - -HN[i], (Ar[i])-Cgamma- - -HN[i+1], (Ar[i])-Cdelta-H- - -O=C[i-1] for betaLanti; C=O[i-1]- - -HN[i+1], (Ar[i])-Cgamma- - -HN[i+1], (Ar[i])-C-H- - -O=C[i] for gammaLgauche+; and C=O[i-1]- - -HN[i+1] for gammaLgauche-. Each of these interactions were further investigated and subsequently characterized by orbital population and Atoms-In-Molecules (AIM) analyses, with the identity of overlap and bond critical points (BCP) serving as 'scoring criteria', respectively. Experimental and theoretical carbonyl stretches were also compared and showed good agreement, adding further strength to the synergy between experiment and theory.  相似文献   

16.
The transport selectivity of carbonate ions relative to chloride ions \(\left( {P_{Cl^ - }^{CO_3^{2 - } } } \right)\) through an anion-exchange membrane during electrodialysis is investigated before and after the membrane was modified by the electrolytic precipitation of sodium alginate on its surface, as well as by pretreating the membrane in a solution of sodium alginate. It is established that the experimental value of \(P_{Cl^ - }^{CO_3^{2 - } } \) is appreciably smaller than the calculated value for the unmodified membrane at low values of current density. At large currents the calculated value of \(P_{Cl^ - }^{CO_3^{2 - } } \) is 0.83, and the experimental value is 0.64. During electrodialysis of the working solution, which contains sodium alginate at a concentration of 1–2 g l?1, \(P_{Cl^ - }^{CO_3^{2 - } } \) decreases by 2–3 times in the current-density range 0.25–1 A dm?2. Pretreatment of the membrane in a solution of sodium alginate having a concentration of 10 g l?1 for 72 h decreases \(P_{Cl^ - }^{CO_3^{2 - } } \) from 0.50 (unmodified membrane) to 0.35.  相似文献   

17.
Complex formation between lead(II) and ethylenedithio diacetic acid (H2 L) has been studied at 25°C in aqueous 0.5M sodium perchlorate medium. Measurements have been carried out with a glass electrode and with a lead amalgam electrode. In acidic medium and in the investigated concentration range experimental data can be explained by assuming the following equilibria: $$\begin{gathered} Pb^{2 + } + L^{2 - } \rightleftharpoons PbL log\beta _{101} = 3.62 \pm 0.03 \hfill \\ Pb^{2 + } + H^ + + L^{2 - } \rightleftharpoons PbHL^ - log\beta _{111} = 6.30 \pm 0.07 \hfill \\ \end{gathered} $$   相似文献   

18.
The infrared (3200-30 cm(-1) spectra of gaseous and solid, the Raman spectra (3200-30 cm(-1)) of the liquid and solid vinyl silyl bromide, CH2CHSiH2Br, have been recorded. Additionally, quantitative depolarization values have been obtained. Both the gauche and cis conformers have been identified in the fluid phases but only the gauche conformer remains in the solid. Variable temperature studies from 0 to -87 degrees C of the Raman spectrum of the liquid was carried out. From these data, the enthalpy difference has been determined to be 22 +/- 6 cm(-1) (0.26 +/- 0.08 kJ/mol), with the gauche conformer being the more stable form. The predictions from the ab initio calculations up to MP2/6-311 + + G(2d,2p) basis set favor the gauche as the more stable form. A complete vibrational assignment is proposed for both the gauche and cis conformers based on infrared band contours, relative intensities, depolarization values and group frequencies. The vibrational assignments are supported by normal coordinate calculations utilizing the force constants from ab initio MP2/6-31G(d) calculations and the potential energy terms for the conformer interconversion have been obtained from the same calculations. Complete equilibrium geometries have been determined for both rotamers by ab initio calculations employing a variety of basis sets up to 6-311 + + G(2d,2p) at levels of restricted Hartree-Fock (RHF) and/or Moller-Plesset (MP) to second order. The results are discussed and compared to those obtained for some similar molecules.  相似文献   

19.
The potential energy surface (PES) for the formation of C7H7(+) from benzyl chloride and chlorotoluene ions was obtained by quantum chemical calculations at the B3LYP/6-311+G(3df,2p)//B3LYP/6-31G(d) level. On the basis of the PES, the RRKM model calculations were carried out to predict the rate constants of the dissociations of the molecular ions of o-, m-, and p-chlorotoluene, all of which agreed well with previous experimental results. The kinetic analysis showed that the benzylium ion was the predominant product in the dissociations of the four isomeric molecular ions, below the thresholds of the formation of tolylium ions.  相似文献   

20.
Parameters of the solvation equilibria \({\left[ {Fe{{\left( {{H_2}O} \right)}_6}} \right]^{3 + }} + nDMSO \rightleftarrows {\left[ {Fe{{\left( {{H_2}O} \right)}_{6 - n}}{{\left( {DMSO} \right)}_n}} \right]^{3 + }} + n{H_2}O\) have been determined in aqueous-dimethyl sulfoxide solutions (0–90 vol% DMSO) by means of spectrophotometry and mathematical modeling of equilibria. Iron(III) is not involved in the complex formation with derivatives of sym-triazine: 2,4-diamino-6-(carbamoylmethylsulfinylmethyl)-1,3,5-triazine and 2,4-diamino-6-(acetohydrazidomethylsulfinylmethyl)-1,3,5-triazine in aqueous DMSO medium (40 vol % DMSO). Bis(hydrazinocarbonylmethyl) sulfoxide forms two complexes with iron(III), with 1: 1 and 1: 2 compositions; in contrast to the Cu(II) and Ni(II) complexes, in the iron complexes the ligand exists in the amide form. The most probable structures of the complexes have been revealed by molecular mechanics simulation and (in selected cases) using the DFT/B3LYP/6-31++G(d,p) density functional theory method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号