首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The (1-0), (2-0), and (3-0) transitions of 15N16O and 15N18O are investigated. The wavenumbers of the rotation-vibration lines are reported for the overtone bands and the 2Π32-2Π12 (1-0) subband. It is shown that in the data reduction it is advantageous to calculate first merged spectroscopic constants ignoring the Λ-type doubling. The vibrational constants ωe, ωexe, ωeye and the vibrational dependence of the rotational constants are determined. The study of 15N18O allows the determination of the equilibrium values of the centrifugal distortion correction ADe to the spin-orbit constant and of the spin-rotation constant γe from the isotopic invariance of the ratios ADeBe and γeBe. It is found that ADeBe = (?3.9 ± 1.3) × 10?6 and γeBe = (?4.00 ± 0.05) × 10?3.  相似文献   

2.
A weak emission spectrum of I2 near 2770 Å is reanalyzed and found to to minate on the A(1u3Π) state. The assigned bands span v″ levels 5–19 and v′ levels 0–8. The new assignment is corroborated by isotope shifts, band profile simulations, and Franck-Condon calculations. The excited state is an ion-pair state, probably the 1g state which tends toward I?(1S) + I+(3P1). In combination with other results for the A state, the analysis yields the following spectroscopic constants: Te = 10 907 cm?1, De = 1640 cm?1, ωe = 95 cm?1, R″e = 3.06 A?; Te = 47 559.1 cm?1, ωe = 106.60 cm?1, R′e = 3.53 A?.  相似文献   

3.
The wavenumbers of the rotation-vibration lines of 14N16O are reported for the (2-0) and (3-0) bands. The full set of spectroscopic constants for the three bands (1-0), (2-0), and (3-0) has been determined with the method developed by Albritton, Schmeltekopf, and Zare for merging the results of separate least-squares fits. The vibrational constants ωe, ωexe, ωeye, and the vibrational dependence of the rotational constants have been deduced. The apparent spin-orbit constant A?v and its centrifugal correction A?D (including the spin-rotation constant) have a vibrational dependence of the following form: A?v = A?e ? αA(v + 12) + γA(v + 12)2 and A?Dv = A?De ? βA(v + 12) + δA(v + built+12)2; the values of the constants in these two equations have been determined.  相似文献   

4.
The 0-0, 1-1, 2-2, and 3-3 bands of the A2Π-X2Σ+ transition of the tritiated beryllium monohydride molecule have been observed at 5000 Å in emission using a beryllium hollow-cathode discharge in a He + T2 mixture. The rotational analysis of these bands yields the following principal molecular constants.
A2Π:Be = 4.192 cm?1; re = 1.333 A?
X2Σ:Be = 4.142 cm?1; re = 1.341 A?
ωe′ ? ωe″ = 16.36 cm?1; ωe′Xe′ ? ωe″Xe″ = 0.84 cm?1
From the pure electronic energy difference (EΠ - EΣ)BeT = 20 037.91 ± 1.5 cm?1 and the corresponding previously known values for BeH and BeD, the following electronic isotope shifts are derived
ΔEei(BeH?BeT) = ?4.7 ≠ 1.5cm1, ΔEei(BeH?BeT) = ?1.8 ≠ 1.5cm1
and related to the theoretical approach given by Bunker to the problem of the breakdown of the Born-Oppenheimer approximation.  相似文献   

5.
Absorption and emission spectra of Mo2 were investigated using flash photolysis of the Mo(CO)6 molecule. Tentative vibrational and rotational analyses of the 98Mo2 spectra were performed. For the ground state, 1Σg+ type was proposed with ωe = 477.1 cm?1, re = 1.929 A?, and D0(Mo2) = 95 ± 15 kcal mole?1. The results were compared with theoretical calculations for Mo2 and experimental results for Cr2 obtained previously. It seems reasonable that the transition metal diatomic molecules of this type have a high bond order.  相似文献   

6.
New quarks and new flavor-changing neutral currents give multiple lepton plus hadron final states in e+e-, vμN, vμN. We observe that (i) e+e- is a favored place to search for their effects through inclusive ratios σ(e+e-+x:σ (μ+μ- +x): σ(e±μ±+x) and same sign leptons e±e±+x, μ±μ±+x,e±μ±+x. Above a new flavor threshold four charged lrpton final states may become important. (ii) Trilepton final states in vμN, vμN are not sensitive to the presence of flavor-changing neutral currents. Much more sensitive are the processes vμN are +e-+βand (for charm changing neutral currents) vμN→e+β.  相似文献   

7.
The rotational structure of about 40 bands of 12C2HD observed in the region 6000?600 cm?1 has been measured and interpreted with the purpose of determining a comprehensive set of molecular constants for this isotopic variety of acetylene. Combining these data with the results for 12C2H2 and 12C2D2, a reevaluation of the equilibrium internuclear distances for the acetylene molecule has been made: re(CH) = 1.06215 ± 17 × 10?5A? and re(CC) = 1.20257 ± 9 × 10?5A? were obtained. This paper presents all the molecular constants derived in this study.  相似文献   

8.
Calculations of vibrational and rotational level spacings of homonuclear inert gas diatomic molecules by numerical integration of the radial Schrödinger equation are presented. The potentials which were used for the ground states of Ar2, Kr2, and Xe2 were obtained from accurate fits to the molecular beam scattering data. From the calculated ΔGv+12's and Bv's, the following spectroscopic constants (in cm?1) were fitted: for Ar2ωe = 31.92, ωexe = 3.31, ωeye = 0.11, Be = 0.060, αe = 0.004; for Kr2 ωe ? 23.99, ωexe ? 1.30, ωeye ? 0.021, Be ? 0.024, αe ? 0.001; for Xe2 ωe ? 21.26, ωexe ? 0.75, ωeye ? 0.008, Be ? 0.013, αe ? 0.0004.  相似文献   

9.
A vibrational and rotational analysis is presented for the D′ → A′ transition (2800–2950 Å) of Br2. The analysis includes 11 rotationally analyzed bands for 79Br2 and 3 for 81Br2, plus bandheads for 70 additional v′-v″ bands of 79Br2, 81Br2, and 79Br81Br. The latter include some violet-degraded and spikelike features at the long-wavelength end of the spectrum, which are interpreted and assigned with the aid of band profile simulations. The assigned features are fitted directly to 14 vibrational and rotational expansion parameters for the two electronic states, from which the following spectroscopic constants are obtained: ΔTe = 35706 cm?1, ωe = 150.86 cm?1, ωe = 165.2 cm?1, Be = 0.042515 cm?1, Be = 0.05944 cm?1, R′e = 3.170 A?, R″e = 2.681 A?. The spectroscopic parameters are used to calculate RKR potentials and Franck-Condon factors for the transition.  相似文献   

10.
The fundamental bands of the CF radical in the X2Π12 and X2Π32 electronic states were observed by using an infrared tunable diode laser as a source. Zeeman modulation could be used in detecting lines not only in the 2Π32 state, but also in 2Π12, because the CF radical deviates considerably from Hund's case (a). From the least-squares analysis of the observed spectra, the following molecular constants were obtained: Be = 1.416 704 (37) cm?1, αe = 0.018 419 (50) cm?1, re = 1.271 977 (17) A?, De = 6.68 (15) × 10?6cm?1, p0 = 0.008 580 (21) cm?1, p1 = 0.008 52 (11) cm?1, and ν0 = 1286.1281 (5) cm?1, with three standard errors in parentheses.  相似文献   

11.
The A 2Σ+-X 2Π emission spectrum of HCl+ has been measured and analyzed for four isotopic combinations. These analyses extend previous work and provide rotational constants for the v = 0–2 levels of the ground state and for the v = 0–9 levels of the excited state. RKR potentials have been determined for both states, although the upper state could not be fitted precisely to such a model. Calculated relative intensities based on these potentials demonstrated that the electronic transition moment must change rapidly with lower state vibrational quantum number. Although considerable caution should be exercised in applying the concept of equilibrium constants to the A 2Σ+ state, the following are the best estimates of these constants (in cm?1) for the X 2Π state of H35Cl+: Be = 9.9406, ωe = 2673.7, Ae = ? 643.7, and re = 1.315 A?. For the A 2Σ+ state of H35Cl: Te = 28 628.08, Be ~ 7.505, ωe ~ 1606.5, and re = 1.514 A?.  相似文献   

12.
The fine structures of the (ν1 + ν2) and (ν2 + ν3) combination bands of ozone in the 5.7-μm region have been recorded and analyzed. The two vibrational states are coupled through Coriolis and second-order distortion terms. The interaction has been treated by the numerical diagonalization of the secular determinant for the two coupled states. With the centrifugal distortion parameters fixed to the ground state values, the following constants have been obtained: ν1 + ν2 = 1796.266, A110 = 3.6104, B110 = 0.44145, C1110 = 0.39029, ν2 + ν3 = 1726.526, A011 = 3.5537, B011 = 0.43982, C1011 = 0.38844, Y13 = ?0.466, and X13 = ?0.010 cm?1. In addition, the following anharmonic constants have been obtained: x12 = ?7.821 and x23 = ?16.494 cm?1. The value of the dipole moment ratio, R = 〈011|μz|0〉〈110|μx|0〉, is 1.30 ± 0.10.  相似文献   

13.
The radiative corrections of O(α) to the final electron spectrum and the total cross sections for the processes νμ + e → νμ + e, νμ + e → νe + e, νe + e → νe + e andνe + e are studied in the framework of the SU(2)L ? U(1) theory. The electroweak corrections to the fisrt two processes are presented in two equivalent schemes in terms of (Gμ, sin2θw) and (Gμ, sin2θ?w(mw)). As a byproduct, the relationship to O(α) between the basic parameters sin2θW ≡ 1 ? mW2/mZ2and sin2θ?W(mW) (defined by modified minimal subtraction) is explicitly given. The QED corrections are evaluated in the extreme relativistic (ER) regime of the final electron (Ee ? me) for the situation in which the bremsstrahlung photons are unobserved and unrestricted. The ER approximation allows us to obtain simple analytic expressions for the differential electron spectrum and the total cross sections. The relationship to O(GFα) between the spin-averaged differential cross sections for the above processes in the ER regime is derived.  相似文献   

14.
The v = 1 ← 0 vibration-rotation bands of the NS radical in the X2Π12 and X2Π32 electronic states were observed by using a tunable diode laser. From the least-squares analysis the band origins were determined to be 1204.2755(12) and 1204.0892(19) cm?1, respectively, for X2Π12 and X2Π32. The rotational and centrifugal distortion constants and the internuclear distance in the X2Π electronic state were obtained as follows: Be = 0.775549(10) cm?1, De = 0.00000129(33) cm?1, and re = 1.49403(4) A?, with three standard deviations indicated in parentheses.  相似文献   

15.
The amplitude ratio 〈3π|T|KS〉/〈3π|T|KL〉 can be well determined in e+e? (or low energy pp)→KoKo from the decay time-distribution when each produced kaon→3π, other unknown parameters of the distribution being obtainable from corresponding observations involving known channels like ππ.  相似文献   

16.
A search was performed for the associated production of two different Higgs bosons via a virtual Z0 in e+e? annihilation (e+e? → h10h20) using the JADE detector at PETRA. This was motivated by the interpretation of the monojet events observed at the CERN pp collider as anomalous Z0 decays into two neutral Higgs bosons (h10 and h20), where h10 is stable and escapes detection while h20 decays into hadrons. Single- or di-jet events with large momentum imbalance are then expected at PETRA energies. No evidence for such events was found in our data; this excludes h20 masses in the range of 1 to 21 GeV with 95% CL, if the branching fraction for Z0 → h10h20 is a larger than one half that for Z0 → vμvμ. The possibility that the monojets could originate from supersymmetric higgsino production from Z0 decay is also examined.  相似文献   

17.
The lifetime and hyperfine structure constants A and B of the 62D32state in41K have been measured by the quantum beat method. The obtained values are: τ = 895(26) ns, |A| = 0.14(2) MHz, |B| = 0.05(2) MHz and B/A > 0.  相似文献   

18.
The rotational motion of the OH? ion was studied in cubic NaOH at 575 K with quasielastic incoherent neutron scattering. The data are compared to two simple models yielding values for the radius of rotation R, the translational mean square displacement 〈u2H, the rotational jump rate τ?1 and the rotational diffusion coefficient DR. The following parameter values are obtained: (a) rotational jump model: R = 0.95 A?, 〈u2H = 0.052 A?2, τ?1 = 2 meV, (b) rotational diffusion model: R = 0.99 A?, 〈u2H = 0.046 A?2, DR = 0.72 meV.  相似文献   

19.
The centrifugal distortion contributions to the rotational energies of diatomic molecules are derived from the resolution of the vibration-rotation wave equation. The unknown radial dependence of the fine structure constants is taken into account by means of a Taylor expansion around the equilibrium distance. Hence, one obtains the expressions of the centrifugal corrections associated with each fine structure constant in terms of the equilibrium values of its radial derivatives. The case of 2Π states is examined in detail. The dependence of the centrifugal distortion effects upon the choice of the coupling scheme representation is exhibited and a 2Π energy matrix containing the centrifugal constants of any order is proposed. Such a matrix is appropriate to fit the data for any value of the rotational quantum number. The theoretical expressions of the energy levels are related to the experimental data and the correlations between the spin-orbit centrifugal and spin-rotation contributions are put in evidence. It is shown that very compact formulas can be derived allowing a straightforward evaluation of the successive radial derivatives of the spin-orbit function in terms of the spectroscopic data A(1) ? ?αA(weBe); A(2) ? ?(1 + αBwe2Be2)A(1); …. Application of these results to the case of several molecules is considered and discussed.  相似文献   

20.
Relative emission intensities of sixteen bands of HCl+ (A2Σ+ - X2Πi), four bands of DCl+ (A2Σ+ - X2Πi), and 5 bands of HBr+ (A2Σ - X2Πi) have been made using both ion-beam excitation and microwave discharge sources. Intensities were determined by comparison with computer-generated spectra. Treatment of the data within the r-centroid approximation shows that in HCl+ the electronic transition moment decreases strongly at large rv′v″ [Re α exp (?3.6rv′v″) for 1.44 A? < rv′v″ < 1.82 A?] but levels off at shorter rv′v″. DCl+ data agree quantitatively with HCl+. The variation in the HBr+ moment is similar, with Re α exp[?4.5 rv′v″] for 1.58 A? < rv′v″ < 1.78 A?.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号