首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Molecular dynamics simulation studies of the structure and the differential capacitance (DC) for the ionic liquid (IL) N-methyl-N-propylpyrrolidinium bis(trifluoromethane)sulfonyl imide ([pyr(13)][TFSI]) near a graphite electrode have been performed as a function temperature and electrode potential. The IL exhibits a multilayer structure that extends 20-30 ? from the electrode surface. The composition and ion orientation in the innermost layer were found to be strongly dependent on the electrode potential. While at potentials near the potential of zero charge (PZC), both cations and anions adjacent to the surface are oriented primarily perpendicular to the surface, the counterions in first layer orient increasingly parallel to the surface with increasing electrode potential. A minimum in DC observed around -1 V(RPZC) (potential relative to the PZC) corresponds to the point of highest density of perpendicularly aligned TFSI near the electrode. Maxima in the DC observed around +1.5 and -2.5 V(RPZC) are associated with the onset of "saturation", or crowding, of the interfacial layer. The asymmetry of DC versus electrode polarity is the result of strong interactions between the fluorine of TFSI and the surface, the relatively large footprint of TFSI compared to pyr(13), and the tendency of the propyl tails of pyr(13) to remain adsorbed on the surface even at high positive potentials. Finally, an observed decreased DC and the disappearance of the minimum in DC near the PZC with increasing temperature are likely due to the increasing importance of entropic/excluded volume effects (interfacial crowding) with increasing temperature.  相似文献   

3.
Non-faradaic potentiometry has been plagued by a great many fundamental errors and a lack of conceptualization. Of greatest concern is the second Nernst equation hiatus. Potentiometry may be generally classified as faradaic and non-faradaic. The former deals with the redox reactions using the Nernst equation to explain the potential origin. The latter deals with the non-redox reactions using the Boltzmann and modified Boltzmann equations to explain the origin of electrode potential. Redox faradaic potentiometry has been well described in the textbooks. However, non-faradaic potentiometry has been almost completely neglected in the literature. Many well-known electrodes, such as the pH glass electrode, common reference electrodes, and ion selective electrodes (ISE) have been mistakenly interpreted as redox reactions or ion exchange reactions. New theories and experimental results show their mechanisms to be non-faradaic in nature. Furthermore, the reaction mechanisms for ISE have been confused in textbooks with redox reactions and the Nernst equation. The ISE potentials originating from adsorption of ions or charged particles based on surface charge density will be explained using the double and counterion triple layers concept. The new counterion triple layer concept may be applied to the potential development of sensors. The reason for a new concept, theory, or mechanism is to better explain the phenomena. Examples will be given of how our new concept explains the capacitor, counterion triple layer, surface adsorbed layers interactions, and the interface structure. We will also discuss the new sensor development based on the new adsorption concept. For the first time a new type of Ag/AgCl reference electrode for non-faradaic potentiometry will be presented, one without a liquid junction and with a Pt wire instead of a salt bridge. They will help open up a new horizon for electrochemical sensor research and may be used under unusual conditions, such as high temperature and high pressure, stirring, etc.  相似文献   

4.
The basis of the complementary use of electrochemical capacitors (so-called supercapacitors) in hybrid electric power generation by rechargeable batteries and fuel cells is explored. Electrochemical capacitors are of two types: one where the interfacial double-layer capacitance of high specific area carbon materials is the basis of electric charge storage (as ions and electrons); and the other where pseudocapacitance, associated with electrosorption and surface redox processes at high-area electrode materials, e.g. RuO2, or at conducting polymers, provides the basis of charge storage. The former, double-layer, type of capacitance stores charge non-faradaically while the latter type, pseudocapacitance, stores charge indirectly through faradaic chemical processes but its electrical behaviour is like that of a capacitor. Two types of hybrid battery/capacitor system are recognized: one based on combination of an electrochemical capacitor cell with a rechargeable battery or a fuel cell in a load-leveling function, e.g. in an electric vehicle power train; and the other based on combination of a faradaic battery-type electrode coupled internally with a capacitative electrode in a two-electrode hybrid module (termed an asymmetric capacitor). Optimization of operation of such systems in terms of balancing of active masses, of power and charge densities, and choice of maximum but limited states-of-discharge, is treated.  相似文献   

5.
Computational models including electrode polarization can be essential to study electrode/electrolyte interfacial phenomena more realistically. We present here a constant-potential classical molecular dynamics simulation method based on the extended Lagrangian formulation where the fluctuating electrode atomic charges are treated as independent dynamical variables. The method is applied to a graphite/ionic liquid system for the validation and the interfacial kinetics study. While the correct adiabatic dynamics is achieved with a sufficiently small fictitious mass of charge, static properties have been shown to be almost insensitive to the fictitious mass. As for the kinetics study, electrical double layer (EDL) relaxation and ion desorption from the electrode surface are considered. We found that the polarization slows EDL relaxation greatly whereas it has little impact on the ion desorption kinetics. The findings suggest that the polarization is essential to estimate the kinetics in nonequilibrium processes, not in equilibrium. © 2019 Wiley Periodicals, Inc.  相似文献   

6.
By means of an ab initio Hartree-Fock cluster study, the properties of the electrical double layer of single crystal electrodes have been studied. Although the model used does not incorporate metal-solution interactions yet, the results of the self-consistent calculations show that the contribution of the metal to double layer properties depends on the crystal face and can be responsible for some general characteristics found experimentally, like the inner layer capacity-charge dependence and its asymmetry around the potential of zero charge. Also the experimentally less accessible surface contraction of electrodes has been modelled and it was found that contraction normal to the electrode surface did not change the interfacial characteristics significantly.  相似文献   

7.
The structure and dynamics of the interfacial layers between the extremely pure air- and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate and Au(111) has been investigated using in situ scanning tunneling microscopy, cyclic voltammetry, electrochemical impedance spectroscopy, and atomic force microscopy measurements. The in situ scanning tunnelling microscopy measurements reveal that the Au(111) surface undergoes a reconstruction, and at -1.2 V versus Pt quasi-reference the famous (22 × √3) herringbone superstructure is probed. Atomic force microscopy measurements show that multiple ion pair layers are present at the ionic liquid/Au interface which are dependent on the electrode potential. Upon applying cathodic electrode potentials, stronger ionic liquid near surface structure is detected: both the number of near surface layers and the force required to rupture these layers increases. The electrochemical impedance spectroscopy results reveal that three distinct processes take place at the interface. The fastest process is capacitive in its low-frequency limit and is identified with electrochemical double layer formation. The differential electrochemical double layer capacitance exhibits a local maximum at -0.2 V versus Pt quasi-reference, which is most likely caused by changes in the orientation of cations in the innermost layer. In the potential range between -0.84 V and -1.04 V, a second capacitive process is observed which is slower than electrochemical double layer formation. This process seems to be related to the herringbone reconstruction. In the frequency range below 1 Hz, the onset of an ultraslow faradaic process is found. This process becomes faster when the electrode potential is shifted to more negative potentials.  相似文献   

8.
The present work reports the structural and electrochemical properties of carbon-modified nanostructured TiO(2) electrodes (C-TiO(2)) prepared by anodizing titanium in a fluoride-based electrolyte followed by thermal annealing in an atmosphere of methane and hydrogen in the presence of Fe precursors. The C-TiO(2) nanostructured electrodes are highly conductive and contain more than 1 × 10(10) /cm(2) of nanowires or nanotubes to enhance their double layer charge capacitance and electrochemical stability. Electrogenerated chemiluminescence (ECL) study shows that a C-TiO(2) electrode can replace noble metal electrodes for ultrasensitive ECL detection. Dynamic potential control experiments of redox reactions show that the C-TiO(2) electrode has a broad potential window for a redox reaction. Double layer charging capacitance of the C-TiO(2) electrode is found to be 3 orders of magnitude higher than an ideal planar electrode because of its high surface area and efficient charge collection capability from the nanowire structured surface. The effect of anodization voltage, surface treatment with Fe precursors for carbon modification, the barrier layer between the Ti substrate, and anodized layer on the double layer charging capacitance is studied. Ferrocene carboxylic acid binds covalently to the anodized Ti surface forming a self-assembled monolayer, serving as an ideal precursor layer to yield C-TiO(2) electrodes with better double layer charging performance than the other precursors.  相似文献   

9.
电解液离子与炭电极双电层电容的关系   总被引:3,自引:0,他引:3  
以酚醛树脂基纳米孔玻态炭(NPGC)为电极, 通过微分电容伏安曲线的测试, 研究了水相体系电解液离子与多孔炭电极双电层电容的关系. 结果表明, 稀溶液中, 多孔炭电极的微分电容曲线在零电荷点(PZC)处呈现凹点, 电容降低, 双电层电容受扩散层的影响显著;若孔径小, 离子内扩散阻力大, 电容下降更为迅速, 扩散层对双电层电容的影响增大. 而增大炭材料的孔径或电解液浓度, 可明显减弱甚至消除扩散层对电容的影响. 炭电极的单位面积微分电容高, 仅表明孔表面利用率高, 如欲获得高的电容量, 还要有大的比表面积. 离子水化对炭电极的电容产生不利影响, 选用大离子和增大炭材料的孔径, 可有效降低离子水化对炭电极电容性能的影响.  相似文献   

10.
Noise method for the analyzing of thermodynamic second-order fluctuations of the electrical double layer charge in complicated electrochemical systems is developed. The method is based on the joint application of the Nyquist fluctuation-dissipation theorem and Laplace transform. Second-order fluctuations of the free charge in the electrical double layer are studied under the conditions when the weak-signal faradaic impedance of equilibrated electrode is determined by the diffusion impedance, alongside with the slow-discharge resistance. It is shown that, unlike the high-order fluctuations, the level of thermodynamic second-order fluctuations of the free charge does not depend on the mechanism of interaction of the thermodynamic system with thermostat; it fully corresponds to the conceptions of the Gibbs statistical thermodynamics.  相似文献   

11.
Convolution procedures are used to extract the faradaic information from chronopotentiometric data, in conditions where significant distortion by double layer charging occurs. The faradaic component of the imposed current is obtained, after measurement of the double layer capacitance, by differentiation of the initial chronopotentiogram. Convolution of this current with the function (πt)?1/2 leads to a potential-convoluted current relationship freed from the effect of double layer charging. The kinetic characterization of the system using a combined analysis of this relationship and that relating the faradaic current to the electrode potential is discussed for the various types of reaction mechanism. The efficiency of the proposed procedure is tested on the galvanostatic reduction of fluorenone in DMF.  相似文献   

12.
The dependence of the differential capacitance (C) of the electrode double layer of a hanging mercury drop electrode in bis (2-ethylhexyl) sodium sulfosuccinate (AOT) solutions on electrode potential (E) and time is measured using three-dimensional phase sensitive ac voltammetry. This methodology, possessing a very wide time window that permits a detailed study of the adsorption phenomena, is based on the reconstruction of C vs E curves, sampled after many phase-sensitive ac chronoamperometric experiments. The shape of these curves allows an estimation of the structure of the layer of AOT molecules absorbed at the electrode surface. AOT molecules form micelles in bulk solutions and they also associate in the charged interface under the strong influence of the electric field into surface aggregates which depend on their concentration and applied potential. The presence of AOT micelles in the bulk solution can be linked with the appearance of a surface film at potentials more negative than those corresponding to a condensed film linked with a capacitance value slightly higher than that normally attributed to a compact layer. The whole phenomenon is proved to be very dependant upon time.  相似文献   

13.
We investigate the effects of image charges, interfacial charge discreteness, and surface roughness on spherical electric double layer structures in electrolyte solutions with divalent counterions in the setting of the primitive model. By using Monte Carlo simulations and the image charge method, the zeta potential profile and the integrated charge distribution function are computed for varying surface charge strengths and salt concentrations. Systematic comparisons were carried out between three distinct models for interfacial charges: (1) SURF1 with uniform surface charges, (2) SURF2 with discrete point charges on the interface, and (3) SURF3 with discrete interfacial charges and finite excluded volume. By comparing the integrated charge distribution function and the zeta potential profile, we argue that the potential at the distance of one ion diameter from the macroion surface is a suitable location to define the zeta potential. In SURF2 model, we find that image charge effects strongly enhance charge inversion for monovalent interfacial charges, and strongly suppress charge inversion for multivalent interfacial charges. For SURF3, the image charge effect becomes much smaller. Finally, with image charges in action, we find that excluded volumes (in SURF3) suppress charge inversion for monovalent interfacial charges and enhance charge inversion for multivalent interfacial charges. Overall, our results demonstrate that all these aspects, i.e., image charges, interfacial charge discreteness, their excluding volumes, have significant impacts on zeta potentials of electric double layers.  相似文献   

14.
The potentiostatic control of surface charge density and interfacial tension of an electrode immersed in an aqueous electrolyte solution offers a possibility for direct studies of non-specific interactions in cell adhesion. Unicellular marine alga, Dunaliella tertiolecta (Chlorophyceae) of micrometer size and flexible cell envelope was used as a model cell and 0.1 M NaCl as supporting electrolyte. The dropping mercury electrode acted as in situ adhesion sensor and the electrochemical technique of chronoamperometry allowed measurement of the spread cell-electrode interface area and the distance of the closest approach of a cell. The adhesion and spreading of a single cell at the mercury electrode causes a displacement of counter-ions from the electrical double layer over a broad range of the positive and negative surface charge densities (from +16.0 to -8.2 microC/cm2). The flow of compensating current reflects the dynamics of adhesive contact formation and subsequent spreading of a cell. The adhesion and spreading rates are enhanced by the hydrodynamic regime of electrode's growing fluid interface. The distance of the closest approach of an adherent cell is smaller or equal to the distance of the outer Helmholz plane within the electrical double layer, i.e. 0.3-0.5 nm. There is a clear evidence of cell rupture for the potentials of maximum attraction as the area of the contact interface exceeded up to 100 times the cross-section area of a free cell.  相似文献   

15.
磷酸三甲酯和碳酸亚乙烯酯对锂离子电池的复合作用   总被引:1,自引:0,他引:1  
应用循环伏安、交流阻抗、扫描电子显微镜和锂离子电池性能检测装置研究了阻燃添加剂磷酸三甲酯(TMP)和成膜添加剂碳酸亚乙烯酯(VC)对锂离子电池的复合作用.结果表明,复合使用TMP和VC不仅能提高电池的安全性而且能改善电池的循环性能,原因可能是在电池首次充放电过程中VC优先还原,还原产物在负极表面聚合形成良好的SEI膜,有效地制约了因TMP在石墨负极表面的分解而造成负极石墨的脱落,同时提高了SEI膜的稳定性.  相似文献   

16.
The potential distribution in electrical double layer is calculated, basing on the data on the electrode charge and cyanide-ion adsorption at the gold electrode. It is shown that the integral capacitances of regions in the dense layer are not unambiguous functions of the electrode potential or charge per se, but depend also on the amount of specifically adsorbed ions Γ. A function is proposed for the describing of the Γ dependence of the dense layer integral capacitances.  相似文献   

17.
Bipolar electrochemistry is based on the gradient distribution of free‐electron density along an electrically isolated electrode, which causes a positive electrode potential at one end and a negative potential at the other, allowing for wide applications in analytical chemistry and materials science. To take full advantage of its wireless and high‐throughput features, various types of optical probes, such as pH indicators and fluorescence and electrochemiluminescence reagents, have often been used to indirectly monitor the interfacial electron transfer through chromogenic or fluorogenic reactions. Herein, we report the first probe‐free imaging approach that can directly visualize the distribution of the interfacial potential in bipolar electrodes, providing essential information for the validation and development of the theory and applications of bipolar electrochemistry. This approach is based on the sensitive dependence of surface plasmon resonance imaging on the local electron density in the electrode, which enables the direct mapping of potential with a spatial resolution close to the optical diffraction limit, a temporal resolution of 50 ms, and a sensitivity of 10 mV. In addition, in contrast to previous optical readouts that relied on faradaic reactions, the present work achieved the impedance‐based measurements under non‐faradaic conditions. It is anticipated that this technique will greatly expand the application of bipolar electrochemistry as a platform for chemical and biosensing.  相似文献   

18.
Electrochemical behavior of electrodes on the basis of CH900-20 activated carbon (AC) cloth has been studied in concentrated sulfuric acid solution. Cyclic voltammetric curves have been studied in the reversibility range (from 0.1 to 0.9 V RHE) and in the deep cathodic charging potential range (from –0.8 to 1 V RHE). It has been shown that electric double layer (EDL) charging occurs in the reversibility range, while faradaic processes of hydrogen intercalation into AC carbon take place in the range of negative potentials (←0.1 V). The intercalation process is governed by slow solid-phase hydrogen diffusion. The specific charge value grows at an increase in concentrated sulfuric acid solution. The mechanism of double intercalation of sulfuric acid and hydrogen into the AC material is suggested. On the basis of the reached specific discharge capacitance of 1,560 C/g (or 1,110 F/g) and Faraday's law, it has been concluded that the compound of C6H is formed in the limiting case of deepest cathodic charging. The obtained data have been used in a mathematical charge–discharge model for an AC electrode taking into account the EDL charging and the hydrogen intercalation. The galvanostatic recharge curves have been calculated in the diapason of currents by the developed model.  相似文献   

19.
More often than not, the measurement of interfacial potentials by means of electrokinetic techniques is affected by interfering processes that may relax or even annihilate their primary response function. Among these processes are faradaic ones, provided that the substrate is sufficiently conducting and a redox function is available, and non-faradaic ones, if geometrical constraints are in effect. Ample experimental evidence is available, e.g., in the collapse of streaming potentials generated by metal/electrolyte solution interfaces, the bipolar microelectrodic redox processes in fluidized beds of metallic particles, and the "superfast" electrophoresis of dispersed ion exchanger particles and electron-conducting particles. Common feature of these apparently disparate phenomena is that the lateral electric field is affected by coupling with transversal depolarization fields, or by conductance gradients due to Donnan effects. Recent work has rigorously analyzed the deformation of the lateral electric field in a (streaming potential) slit cell by electron transfer reactions at the interface, taking into account both convective diffusion of the electroactive species and kinetics of the interfacial electron transfer reaction. Here a common, generic basis for faradaic and non-faradaic double layer depolarization is formulated along the lines set by Onsager, and methodologies for retrieving the underlying electrokinetic parameters from experimental data are evaluated. Particular attention is paid to the limitations of double layer polarization, as posed by the substrate.  相似文献   

20.
This work investigated the effect of counter‐ions and interfacial turbulence on oxygen transfer from gas to liquid phase containing ionic surfactant, and experiments were performed in a mechanically stirred reactor with flat gas–liquid interface. Counter‐ions in terms of hydration ability and polarizability influence the interfacial coverage of ionic surfactants (i.e. cetytrimethylammonium bromide (CTAB) and cetytrimethylammonium chloride) with the same hydrocarbon chain length, producing hindrance but in different extent on oxygen transfer. The addition of electrolyte (NH4Br) substantially reduced the interfacial tension and surface charge of micelles (zeta potential) in CTAB system, and this salt effect greatly compressed interfacial double layer leading to gas transfer inhibition. The surface charge, aggregation number as well as stability of micelles formed above the critical micelle concentration could also alter interfacial configuration of surfactant layer reflected by gas absorption rate. Liquid turbulence was analyzed to decide the role of surfactant present in water on gas–liquid mass transfer, since Marangoni instability effect playing positive role should be taken into consideration under moderate liquid flow, while in turbulent system, contribution of Marangoni effect became overshadowed and consequently surfactant pose ‘barrier’ effect on gas transfer due to its surface active nature. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号