首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A generalized scheme of successive stages for chemisorption, electrooxidation and electroreduction of simple organic compounds from methane to CO2 on platinum group metals has been developed on the basis of experimental data. The actual pathway of electrooxidation or electroreduction of an organic compound and the yield of the reaction products depend on the ratio between the rates of individual steps which, in their turn, are determined by various factors (potential, temperature, coverage of the surface with Hads and OHads, with reacting and intermediate organic particles, as well as with foreign particles). The accumulation of chemisorbed compounds on the electrode surface depends on the relationship between the rates of their formation and subsequent transformation.  相似文献   

2.
The catalytic liquid-phase hydrogenation of maleic acid on platinum and rhodium has been investigated. It is shown that the rate-determining step of this process as well as of the electroreduction process of maleic acid is the interaction of the chemisorbed particle of maleic acid with the adsorbed hydrogen which is formed at the preceding rapid stage of either the dissociative adsorption of molecular hydrogen, or the electrochemical stage of hydrogen ion discharge. The rate of the process with the same degree of surface coverage with hydrogen and chemisorbed particles of maleic acid does not depend on whether the process is carried out catalytically or electrochemically, on whether maleic acid and hydrogen were preliminarily adsorbed on the surface of the electrode-catalyst or not. With due regard for the mutual influence of chemisorbed particles participating in the rate-determining stage, the main kinetic equations for the electroreduction and catalytic hydrogenation processes have been derived. The difference in the rates of electroreduction of maleic acid on platinum and rhodium, with the same degree of electrode surface coverage with reactants, is shown to be the result of differences in the adsorption heats (or bonding strength with the surface) of hydrogen and maleic acid on these two metals. Experimental procedures are described in Part I [1].  相似文献   

3.
Pd–Rh alloys were prepared by electrochemical codeposition. Bulk compositions of the alloys were determined by the energy dispersive X-ray analysis method, while surface compositions were determined from the potential of the surface oxide reduction peak. Cyclic voltammograms, recorded in 0.5 M H2SO4 for Pd–Rh alloys of different bulk and surface compositions, are intermediate between curves characteristic of Pd and Rh. The influence of potential cycling on electrochemical properties and surface morphologies of the alloys was studied. Due to electrochemical dissolution of metals, both alloy surface and bulk become enriched with Pd. Carbon oxides were adsorbed at a constant potential from the range of hydrogen adsorption. The presence of adsorbed CO2 causes remarkable diminution of hydrogen adsorption but it does not significantly influence hydrogen insertion into the alloy bulk. On the other hand, in the presence of adsorbed CO, both hydrogen absorption and adsorption are strongly suppressed. Oxidative removal of the adsorbates results in a characteristic voltammetric peak, whose potential increases with the decrease in Rh surface content. Electron per site (eps) values calculated for the oxidation of the adsorbates change with alloy surface composition, more for CO2 than CO adsorption, indicating the variation of the structure and composition of CO2 and CO adsorption products. The course of the dependence of eps values on surface composition suggests that the products of CO2 and CO adsorption on Pd–Rh alloys are similar but not totally identical.  相似文献   

4.
The results of a radio-and electrochemical study of the adsorption of HCOOH and CH3OH and the oxidation of their chemisorption products on platinized electrode in 0.5 M H2SO4 have been presented and some remarks on the mechanism of the electrode processes have been given.It has been concluded that the rate determining step in adsorption of both fuels should be considered as charge transfer process. No heterogeneity of the platinum surface has been detected. It is supposed that the strongly bound intermediate is a composition of CxOOH and CO radicals coupled by hydrogen bonding. Water molecules adsorbed on the electrode surface are most likely the surface oxidant involved in the oxidation of the chemisorbed species.  相似文献   

5.
Potentiostatic current—potential curves of hydrogen oxidation were measured at 0.5 mV s?1 on two smooth platinum electrodes of different shape in the presence of various coverages with chemisorbed carbon monoxide in 0.5 M H2SO4, stirred with molecular hydrogen at 1 cm3 s?1. Carbon monoxide coverages up to 0.6 have a small influence. The hydrogen oxidation remains controlled by convective diffusion of molecular hydrogen. Above coverages of 0.6, a kinetic step becomes increasingly predominant. The effect of chemisorbed carbon monoxide on the H2 oxidation is similar to that on hydrogen adsorption, studied previously. The correlation between the rate of the kinetic step and the free energy of hydrogen adsorption in the Temkin model of the surface is established and discussed.  相似文献   

6.
The interaction of methanol with a clean (110) ruthenium surface has been studied using temperatures programmed desorption methods. Methanol dissociates upon adsorption at 300 K and yields H2(g) and chemisorbed CO as the dominant products. Randomization of evolved hydrogen was shown to occur during methanol adsorption and also upon subsequent thermal desorption using isotopically labeled methanol, CH3OD. In addition to hydrogen and CO, small amounts of H2CO, CH3OH, CO2, and H2O, are also observed upon thermal desorption. In contrast with a previous study of formaldehyde on Ru(110), no detectable CH4 product is found upon methanol desorption.  相似文献   

7.
Dissociative chemisorption of methane over ruthenium, cobalt, platinum and their bimetallic counterparts supported by alumina and NaY was investigated under a wide range of temperatures. The extent of hydrogen loss from methane was monitored by deuterium uptake of the surface CHx species formed from methane during the course of methane chemisorption. The presence of a high average number of deuterium in the desorbing methane suggested a widespread dissociation of methane. The initial distribution of the deuterated products generally decreased in the sequence CD4>CHD3>CH2D2. The amount of chemisorbed methane during methane chemisorption increases with temperature and it follows the sequence of reducibility of the supported metals and particle size which, in turn, depends on the support and the alloy formed. CHx (x=1) species prevailed on alumina supported catalysts, while on NaY supported metals, CH2 species are dominant when small metal particles are stabilized inside the supercage. Dedicated to Professor Pál Tétényi on the occasion of his 70th birthday  相似文献   

8.
A comparative investigation of electrocatalytic and adsorption properties of platinum microparticles electrodeposited onto a glassy carbon surface (Pt/GC) and within a thin Nafion® film formed on a GC electrode (Pt/Nf/GC) is described. As test reaction the methanol oxidation in sulfuric acid solutions is used. Dependences of the steady-state specific reaction rates upon potential and methanol concentration were established, as well as those of the platinum surface coverage with methanol chemisorption products upon concentration. It was shown that at higher platinum loadings (above 60 μg cm−2) the specific activities of Pt/GC and Pt/Nf/GC are nearly the same and close to that of smooth platinum. At such loadings the surface coverage of the platinum deposit surface with organic particles does not differ from that of smooth platinum. At very low platinum loadings in the polymeric matrix (10–30 μg cm−2) a considerable decrease in the adsorption of strongly chemisorbed methanol particles is observed. These deposits are characterized by a low specific activity, which may be caused by the decrease of the platinum particle’s size, leading to a decrease in the amount of weakly bound methanol particles participating in the limiting reaction step.  相似文献   

9.
The multi-component nanocatalysts based on platinum-transient metals alloys applied onto dispersed carbon material are considered as the most promising catalysts, which can be substituted for platinum in the fuel cell cathodes. The electrocatalytic activity of platinum in the PtM1/C and PtM1M2/C alloys increases by several times with simultaneous increase in the stability. From the results obtained by structural and electrochemical methods, it is found that the synthesized binary and ternary catalysts are the metal alloys, whose surface is enriched in platinum as a result of surface segregation and subsequent chemical or electrochemical treatment. Under the corrosive attack, the less-noble metal, which has not entered into the alloy, dissolves, and the core-shell structures form. The properties of platinum in the shell differ from its properties in Pt/C due to the ligand effect of the core (metal alloy). As a result, the surface coverage with oxygen chemisorbed from water decreases in the binary and ternary systems. This causes an increase of the catalytic activity in the O2 reduction reaction due to a decline in the effect of surface blocking against molecular oxygen adsorption and a decrease in the platinum dissolution rate, because the oxidation of platinum by water is the onset of corrosion process. For the catalytic systems studied, the mass activity decreases in the following order: 20% Pt in PtCoCr/C > 7.3% Pt in PtCo/C ≥ 7.3% Pt in PtCr/C and PtNi/C ≥ 40% Pt/C. The application of PtCoCr/C catalyst as the cathode in a low-temperature hydrogen-air fuel cell enabled one to reduce the platinum consumption by one half on retention of its performance.  相似文献   

10.
The use of gallium for cleaning hydrogen‐contaminated Al2O3 surfaces is explored by performing first principles density functional calculations of gallium adsorption on a hydrogen‐contaminated Al‐terminated α‐Al2O3(0001) surface. Both physisorbed and chemisorbed H‐contaminated α‐Al2O3(0001) surfaces with one monolayer (ML) gallium coverage are investigated. The thermodynamics of gallium cleaning are considered for a variety of different asymptotic products, and are found to be favorable in all cases. Physisorbed H atoms have very weak interactions with the Al2O3 surface and can be removed easily by the Ga ML. Chemisorbed H atoms form stronger interactions with the surface Al atoms. Bonding energy analysis and departure simulations indicate, however, that chemisorbed H atoms can be effectively removed by the Ga ML. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
The processes of adsorption and electrooxidation of glucose on a smooth platinum electrode have been investigated in a wide range of pH values. It is found that glucose adsorption are platinum is accompanied by dehydrogenation of adsorbed molecules. The θR vs. Er dependence represents a bell-shaped curve with unequal sides and with a maximum at Er = 0.2 V at 0 < pH < 12 or at Er = 0.4 when pH > 12. The kinetics of adsorption is described by the Roginsky-Zel'dovich equation, and the dependence of the steady-state coverage on the glucose bulk concentrations by the Temkin isotherm.It is shown that in the case of glucose adsorption on platinum Qdehyd.H > QH, i.e. when glucose is brought into contact with a platinum electrode, the catalytic decomposition of glucose molecules occurs in addition to the formation of strongly chemisorbed particles. The transient current at Er < 1.0 V is a current due to the ionization of hydrogen formed during adsorption with dehydrogenation of glucose and its catalytic decomposition. The glucose electrooxidation rate under steady-state conditions at Er < 0.7 V is determined by the interaction of the chemisorbed carbon-containing particle with OHads. The slow step of glucose electrooxidation in the potential range 1.0 < Er < 1.5 V is the interaction of glucose molecules from the solution bulk with the surface platinum oxide, the latter undergoing a quick electrochemical regeneration thereafter.The basic regularities and mechanism of glucose electrooxidation on platinum are shown to be analogous to those obtained earlier for such elementary organic fuels as formaldehyde and formic acid.  相似文献   

12.
Oxygen adsorption and chemisorption and the kinetics of interaction between adsorbed oxygen and CO on nickel ultradispersed powder (average size of particles, 20 nm) are studied. The ultradispersed nickel powder was dosed by the products of pyrolysis of chemisorbed ethylene (pyrocarbon) in the amount of 0.1–1.6 of a monolayer. The spectra of ferromagnetic resonance of the ultradispersed nickel powder before and after ethylene adsorption and pyrolysis and after adsorption and chemisorption of oxygen and its reduction by hydrogen are recorded. The magnetization of ultradispersed nickel powder increases upon dosing the surface with ethylene (C2H4ads) and pyrocarbon in the amount of 0.5 of a monolayer. Pyrocarbon inhibits the Oads + CO reaction. The reaction orders with respect to Oads and CO and the experimental activation energy change. The effects of small (less than a monolayer) and large (more than a monolayer) amounts of the modifying agent are different.  相似文献   

13.
The influence of various anions and pH on methanol oxidation as well as its products of chemisorption on platinum has been studied by voltammetric and radiometric methods. It was found that the rate of methanol oxidation from the bulk solution was lowest for Na2CO3 and highest for NaOH solutions. The influence of anions on the chemisorbed species of methanol on a platinum electrode has also been investigated.  相似文献   

14.
The adsorption of CO and CO2 on platinum, nickel and copper was studied by X-ray and UV photoelectron spectroscopy. The results indicate that CO2 is physisorbed on platinum and copper and that the bonding of CO on all three metals involves the metal d-electrons and particularly the 5σ level of CO. It is suggested that the energy required to promote a copper d-electron to an unfilled level above the Fermi energy is responsible for the small heat of adsorption of CO on copper.  相似文献   

15.
Nanometer platinum-deposited titania particles were prepared through a soft chemical reduction method. The physico-chemical properties of the obtained products are analyzed by X-ray diffraction, UV-vis diffuse reflectance spectroscopy, and photoluminescence spectra. The as-prepared metal-TiO2 nanohybrid was found to show excellent photocatalytic reactivity toward rhodamine-B decomposition. In the current case, chemical reduction of hydrogen hexachloroplatinate by glucose results in the intercalation of metallic platinum into the titania matrix. The deposited platinum atoms were featured by surface-plasmon resonance under visible-light excitation and electrons from platinum nanoparticles would transfer to the conduction band of titania and accelerate the formation O2*− to degrade dye molecule. As a consequence, platinum deposition onto TiO2 surface is confirmed to yield a superior photocatalytic performance over the naked titania.  相似文献   

16.
Bimetallic catalysts PtM (M = Co, Ni, or Cr) are synthesized. They exceed purely platinum commercial catalyst E-TEK (20 wt % Pt) in its mass activity (mA/mgPt) and specific activity (mA/cPt2) in the oxygen reduction reaction. According to XRD data, the high-temperature synthesis involving metal N4-complexes, chloroplatinic acid, and XC72 carbon black as precursors, yields alloys (or solid solutions) of the metals. The higher activity of the bimetallic catalyst PtCo/C is likely to be caused by the practically entire formation of solid solutions (Pt3Co and PtCo), unlike PtNi and PtCr where nickel and chromium exist also as oxides that decorate the electrode surface and partly block active centers. It is shown that the mechanism of the oxygen reduction reaction at the synthesized catalysts is similar to that of oxygen reduction at the purely platinum catalyst. The slow stage in the process is transfer of the 1st electron; at potentials more positive than 0.6 V the reaction mainly yields water. The higher electrocatalytic activity of the bimetallic systems is caused by the alloy formation, which leads to changes in the bond length between platinum atoms. The achieving of the optimal bond length, as a result of the alloy formation, provides appropriate conditions for dissociative adsorption of oxygen molecules; the surface coverage with oxygen-containing particles adsorbed from water (which block active centers for O2 adsorption) decreased. The increase in the activity may also be caused by the formation of the “core-shell” structures whose surface is enriched with platinum whose surface properties are changed under the ligand action of the core formed by the metal alloy  相似文献   

17.
It is suggested that, for the operation of platinum catalysts based on tin dioxide in air hydrogen fuel cells, hydrogen spillover (migration) leading to a change in the electron and proton contributions of the catalyst conductivity is of crucial importance. The hydrogen adsorption, dissociation, and migration in the platinum-tin dioxide-hydrogen system surface have been modeled by the density functional theory method within the generalized gradient approximation (GGA) under periodic conditions using a projector-augmented plane-wave (PAW) basis set with a pseudopotential. It has been demonstrated that the adsorption energy of a hydrogen molecule onto a platinum cluster increases from 1.6 to 2.4 eV as the distance to the SnO2 substrate decreases. The calculated Pt-H bond length for adsorbed structures is 1.58–1.78 Å. The computer modeling has demonstrated that: (1) the hydrogen adsorption energy on clusters is higher than on the perfect platinum surface; (2) dissociative chemisorption onto Pt n clusters can occur without a barrier and depends on the adsorption site and the cluster structure; (3) the adsorption energy of hydrogen onto the SnO2 surface is higher than the adsorption energy onto the platinum cluster surface: (4) multiple H2 dissociation on the tin dioxide surface occurs with a barrier; (5) the dissociation adsorption of hydrogen molecules onto the platinum cluster surface followed by atom migration (spillover) is energetically favorable.  相似文献   

18.
ESR spectra are reported for O2, H2SO2, and N2O adsorbed at low temperatures on n-type rutile after reduction with hydrogen at 700–1000C (<1% reduction). The gases alter the conductivity and produce ESR signals at liquid-nitrogen temperature (i. e., are chemisorbed), but the binding is very weak, being reversible for O2, H2, and He at that temperature. It is considered that the high polarizability of the lattices causes very shallow surface acceptor levels to arise by physical adsorption; these localize the conduction electrons at lattice ions adjacent to the adsorbed molecules.  相似文献   

19.
Infrared spectra of CO-treated platinum hydrosols subsequently treated with acetylene, hydrogen, and oxygen reveal that v(CO)ads decreases from 2070 cm−1 with increasing gas-treatment time. This has been attributed to a reduction in the coverage of adsorbed CO. In Pt sol/CO/C2H2 systems, v(CO)ads decreases to a limiting value of ca. 2060 cm−1 after exposure to acetylene. In the Pt sol/CO/H2 systems, v(CO)ads decreases to ca. 2050 cm−1 after exposure to hydrogen gas. The lower frequency in the Pt sol/CO/H2 system has been attributed to CO adsorption on more active metal sites formed from the reduction of surface platinum oxides. Exposure of the CO-treated platinum hydrosols to O2 gas was found to cause the eventual disappearance of the v(CO)ads band in infrared spectra, which was attributed to oxidation of adsorbed CO to CO2 by weakly bound surface layers of platinum oxides formed by the oxygen treatment.  相似文献   

20.
The effects of H2 and H2 + O2 gas mixtures of varying composition on the state of the surface of the Pt/MoO3 model catalyst prepared by vacuum deposition of platinum on oxidized molybdenum foil were investigated by X-ray photoelectron spectroscopy (XPS) at room temperature and a pressure of 5–150 Torr. For samples with a large Pt/Mo ratio, the XP spectrum of large platinum particles showed that the effect of hydrogen-containing mixtures on the catalyst was accompanied by the reduction of molybdenum oxide. This effect results from the activation of molecular hydrogen due to the dissociation on platinum particles and subsequent spill-over of hydrogen atoms on the support. The effect was not observed at low platinum contents in the model catalyst (i.e., for small Pt particles). It is assumed for the catalyst that the loss of its hydrogen-activating ability is a consequence of the formation of platinum hydride. Possible participation of platinum hydride as intermediate in hydrogen oxidation to H2O2 is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号