首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent theoretical and numerical developments show analogies between quantum chromodynamics (QCD) and disordered systems in condensed matter physics. We study the spectral fluctuations of a Dirac particle propagating in a finite four-dimensional box in the presence of gauge fields. We construct a model which combines Efetov's approach to disordered systems with the principles of chiral symmetry and QCD. To this end, the gauge fields are replaced with a stochastic white-noise potential, the gauge field disorder. Effective supersymmetric nonlinear sigma models are obtained. Spontaneous breaking of supersymmetry is found. We rigorously derive the equivalent of the Thouless energy within our generic model implying the universality of this scale in QCD. Connections to other low energy effective theories, in particular, the Nambu-Jona-Lasinio model and chiral perturbation theory, are found.  相似文献   

2.
P. J. Mulders 《Pramana》2009,72(1):83-95
We discuss the treatment of intrinsic transverse momenta in high energy scattering processes. Within the field theoretical framework of QCD, the process is described in terms of correlators containing quark and gluon fields. The correlators, parametrized in terms of distribution and fragmentation functions, contain matrix elements of nonlocal field configurations requiring a careful treatment to assure colour gauge invariance. It leads to nontrivial gauge links connecting the parton fields. For the transverse momentum-dependent correlators the gauge links give rise to time reversal odd phenomena, showing up as single spin and azimuthal asymmetries. The gauge links, arising from multi-gluon initial and final state interactions, depend on the colour flow in the process, challenging universality.   相似文献   

3.
《Nuclear Physics B》1988,302(3):448-470
We study the spatial distribution and orientation of the colour fields around a static adjoint source using lattice gauge theory simulations in the pure gauge approximation. This configuration is not of immediate application to experiment although from a theoretical viewpoint it is the “hydrogen atom” of pure gauge QCD. We concentrate on the low-lying states of angular momentum J = 1 which are in the T1+ and T1− representations of the cubic symmetry group. Sum rules relating integrals over the fields to the mass of the state are evaluated. The conclusion is that the colour fields are like those from a rough string rotating around the source.  相似文献   

4.
Spontaneous and explicit chiral symmetry breaking is analyzed in Coulomb gauge QCD at finite temperatures, using an instantaneous approximation for the quark interaction and incorporating confinement through a running coupling constant. The thermodynamics of the quarks is treated approximatively by assuming that the momentum-dependent constituent quark mass sets the scale for thermodynamic fluctuations of colour singlet excitations. We investigate the class of a temperature independent and a temperature dependent interaction between quarks. In the chiral limit both temperature independent and a smooth temperature dependent interaction yields a second order chiral phase transition with critical exponents close to the values for a BCS super-conductor. For explicit chiral symmetry breaking we find a nearly constant pion mass below the transition temperature, but a strongly overdamped mode above. For a first order deconfining transition in the gluonic sector also the quark sector shows a first order chiral phase transition. The relevance of our results for relativistic heavy ion collisions is briefly discussed.  相似文献   

5.
In this contribution we describe how an exact chiral symmetry can be realized on the lattice. A practical realization of a lattice Dirac operator that leads to a chiral invariant lattice action is discussed and a simulation with this operator is presented that aims at testing the phenomenon of spontaneous chiral symmetry breaking in QCD.Received: 30 September 2002, Published online: 22 October 2003PACS: 11.15.Ha Lattice gauge theory - 12.38.Gc Lattice QCD calculations  相似文献   

6.
One of the most challenging issues in QCD is the investigation of spontaneous chiral-symmetry breaking, which is characterized by the non-vanishing chiral condensate when the bare fermion mass is zero. In standard methods of the lattice gauge theory, one has to perform expensive simulations at multiple bare quark masses, and employ some modeled functions to extrapolate the data to the chiral limit. This paper applies the probability distribution function method to computing the chiral condensate in lattice QCD with massless dynamical quarks, without any ambiguous mass extrapolation. The results for staggered quarks indicate that this might be a promising and efficient method for investigating the spontaneous chiral-symmetry breaking in lattice QCD, which deserves further investigation.  相似文献   

7.
Discretisation errors in two-flavour lattice QCD with Wilson quarks and DBW2 gauge action are investigated by comparing numerical simulation data at two values of the bare gauge coupling. Both non-zero- and zero-twisted-mass values are considered. The results, including also data from simulations using the Wilson plaquette gauge action, are compared to next-to-leading order chiral perturbation theory formulas.  相似文献   

8.
Chiral symmetry breaking at finite temperature is analysed in Coulomb gauge QCD, using a suitably renormalised gap equation. In Coulomb gauge the gap equation is derived using the Ward identities and the Dyson equations for the vector and axial-vector vertices. Making the ladder approximation to the Bethe-Salpeter kernel relates the chiral symmetry breaking parameters to the static quark potential. It is thus possible to use a confining potential in the analysis of chiral symmetry breaking. We extend this to finite temperature. For a confining potential there is no chiral symmetry restoration at any finite temperature.  相似文献   

9.
It is shown that, in order for the U(1) Goldstone boson to decouple from the physical sector, a third rank skew-symmetric tensor gauge field theory has to be realized dynamically by asymptotic fields of bound states in QCD. The abelian-like gauge invariance of this tensor gauge theory is just a realization of the original QCD gauge (BRS) invariance which hence assures the decoupling of all the bound-state modes by the “quarlet mechanism”. A general procedure for fixing gauges in such types of skew-symmetric tensor gauge theories is also presented.  相似文献   

10.
Recent developments in lattice gauge theory are discussed from a statistical mechanics viewpoint. The basic physics problems of quantum chromodynamics (QCD) are reviewed for an audience of critical phenomena theorists. The idea of local gauge symmetry and color, the connection between statistical mechanics and field theory, asymptotic freedom and the continuum limit of lattice gauge theories, and the order parameters (confinement and chiral symmetry) of QCD are reviewed. Then recent developments in the field are discussed. These include the proof of confinement in the lattice theory, numerical evidence for confinement in the continuum limit of lattice gauge theory, and perturbative improvement programs for lattice actions. Next, we turn to the new challenges facing the subject. These include the need for a better understanding of the lattice Dirac equation and recent progress in the development of numerical methods for fermions (the pseudofermion stochastic algorithm and the microcanonical, molecular dynamics equation of motion approach). Finally, some of the applications of lattice gauge theory to QCD spectrum calculations and the thermodynamics of. QCD will be discussed and a few remarks concerning future directions of the field will be made.Supported in part by the NSF under grant No. PHY82-01948  相似文献   

11.
Recently Polchinski and Strassler reproduced the high energy QCD scaling at fixed angles from a gauge string duality inspired by the AdS/CFT correspondence. In their approach a confining gauge theory is taken as approximately dual to an AdS space with an IR cut-off. Considering such an approximation (AdS slice) we found a one to one holographic mapping between bulk and boundary scalar fields. Associating the bulk fields with dilatons and the boundary fields with glueballs of the confining gauge theory we also found the same high energy QCD scaling. Here, using this holographic mapping, we give a simple estimate for the mass ratios of the glueballs assuming the AdS slice approximation to be valid at low energies. We also compare these results to those coming from supergravity and lattice QCD.Received: 10 September 2003, Revised: 19 November 2003, Published online: 9 January 2004  相似文献   

12.
Zeitschrift für Physik C Particles and Fields - The stability of the chiral vacuum is explored in Coulomb gauge QCD, in the Breit frame. We find that perturbative Coulomb and transverse gluon...  相似文献   

13.
We complete the derivation of the Cornwall-Jackiw-Tomboulis effective potential for quark propagator at finite temperature and finite quark chemical potential in the real-time formalism of thermal field theory and in Landau gauge. In the approximation that the function A(p2) in inverse quark propagator is replaced by unity, by means of the running gauge coupling and the quark mass function invariant under the renormalization group in zero temperature Quantum Chromadynamics (QCD), we obtain a calculable expression for the thermal effective potential, which will be a useful means to research chiral phase transition in QCD in the real-time formalism.  相似文献   

14.
We analyze the interplay of topological objects in four-dimensional QCD at finite temperature on the lattice. The distributions of color magnetic monopoles in the maximum abelian gauge are computed around instantons. Studies are performed in both pure and full QCD and in both the confinement and deconfinement phase. We find an enhanced probability for monopoles inside the core of an instanton on gauge field average. This is independent of the topological charge definition used. For specific gauge field configurations we visualize the situation graphically. Moreover the correlation of monopole loops and instantons with the chiral condensate is investigated. Strong evidence is found that clusters of the quark condensate and topological objects coexist locally on individual configurations.  相似文献   

15.
We complete the derivation of the Cornwall-Jackiw-Tomboulis effective potentiM for quark propagator at finite temperature and finite quark chemical potential in the real-time formalism of thermal field theory and in Landau gauge. In the approximation that the function A(p^2) in inverse quark propagator is replaced by unity, by means of the running gauge coupling and the quark mass function invariant under the renormalization group in zero temperature Quantum Chromadynamics (QCD), we obtain a calculable expression for the thermal effective potential, which will be a useful means to research chiral phase transition in QCD in the real-time formalism.  相似文献   

16.
Landau gauge quark propagators are calculated in both the confined and the deconfined phases of QCD. We discuss the magnitude of the resulting screening lengths as well as aspects of chiral symmetry relevant to the quark propagator.  相似文献   

17.
The CP violating Dashen phase in QCD is predicted by chiral perturbation theory to occur when the up–down quark mass difference becomes sufficiently large at fixed down-quark mass. Before reaching this phase, all physical hadronic masses and scattering amplitudes are expected to behave smoothly with the up-quark mass, even as this mass passes through zero. In Euclidean space, the topological susceptibility of the gauge fields is positive at positive quark masses but diverges to negative infinity as the Dashen phase is approached. A zero in this susceptibility provides a tentative signal for the point where the mass of the up quark vanishes. I discuss potential ambiguities with this determination.  相似文献   

18.
《Nuclear Physics B》1999,544(3):759-774
A new multifermion formulation of lattice QCD is proposed. The model is free of spectrum doubling and preserves all non-anomalous chiral symmetries up to exponentially small corrections. It is argued that a small number of fermion fields may provide a good approximation making computer simulations feasible.  相似文献   

19.
We propose that in QCD with dynamical quarks, colour deconfinement occurs when an external field induced by the chiral condensate strongly aligns the Polyakov loop. This effect sets in at the chiral symmetry restoration temperature and thus makes deconfinement and chiral symmetry restoration coincide. The predicted singular behaviour of Polyakov loop susceptibilities at is shown to be supported by finite temperature lattice calculations. Received: 27 September 2000 / Published online: 8 December 2000  相似文献   

20.
We model the QCD Dirac operator as a power-law random banded matrix (RBM) with the appropriate chiral symmetry. Our motivation is the form of the Dirac operator in a basis of instantonic zero modes with a corresponding gauge background of instantons. We compare the spectral correlations of this model to those of an instanton liquid model (ILM) and find agreement well beyond the Thouless energy. In the bulk of the spectrum the dimensionless Thouless energy of the RBM scales with the square root of system size in agreement with the ILM and chiral perturbation theory. Near the origin the scaling in the RBM remains the same as in the bulk which agrees with chiral perturbation theory but not with the ILM. Finally we discuss how this RBM should be modified in order to describe the spectral correlations of the QCD Dirac operator at the finite temperature chiral restoration transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号