首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The 113, 115In(α, 3nγ)114, 116Sb reactions have been studied using γ-ray spectroscopic techniques. The experiments included γ-ray excitation function, γ-γ coincidence, lifetime, γ-ray angular distribution and conversion electron measurements. A ΔJ = 1 rotational band has been observed in either of the 114, 116Sb final nuclei. Energy spacings and electromagnetic properties of the band show strong resemblances with those of rotational bands in the adjacent odd-mass Sb nuclei. In addition two-quasiparticle and two-quasiparticle core coupled states have been observed in these nuclei. One isomer was identified in 116Sb, i.e. a Jπ = 11+ state at 1889 keV (T12 = 4.0±0.1 ns). A simple model is proposed which explains the ΔJ = 1 band in terms of rotational alignment of the h112 neutron with the deformed rotating odd-A core.  相似文献   

2.
The g-factors of the 10+ isomeric states in 194Hg and 196Hg have been measured using the in beam IPAD method. The results g(194Hg) = ?0.24(4) and g(196Hg) = ?0.18(9) are in agreement with the value expected for an (i132?2) neutron satructure and clearly contradict the previous assignment as (h112?2) proton configurations. Cranking model calculations show that the neutron excitation energies in the rotating frame agree satisfactorily with the experimental energies and that the proton excitations are expected ≈2 MeV above the experimental yrast line  相似文献   

3.
A magnetic dipole core polarization was studied by investigating a magnetic moment of the 1117 keV 1h112 single-proton state in 141Pr. The 139La(α, 2nγ)141Pr reaction was used to populate the 1h112 state with spin aligned in a plane perpendicular to the beam axis. The magnetic moment was obtained by measuring perturbed angular distributions of the 972 keV gamma rays from the 1h112 state. The g-factor of the 1h112 state in 141Pr was determined to be g = 1.30 ± 0.08. The isovector spin g-factor was deduced from the present result and the data for 1h112. neutron states. It is gs?effgs?free = 0.45 ± 0.1. The reduction is explaine spin-isospin (M1) core polarization.The isovector M1 core polarization factor (nuclear M1 susceptibility) is found to be one third of the M2 core polarization factor (nuclear M2 susceptibility) for the 1h112 state.  相似文献   

4.
High-spin states in 195, 197Tl have been populated with (α, xn) reactions and studied by means of in-beam γ-ray and e? spectroscopic methods. Complementary studies of the decay of 195, 197Pb to 195, 197Tl have been carried out. Several new features have been observed in these nuclei. The 92? bands of 195, 197T1. extended to 272(?) and 292(?), respectively, show a quenching of energy spacings between the 232?, 252?, 272(? and 292(? states. This has been interpreted as resulting from the coupling of a h92 proton to the (πh?2112)8+, 10+ configurations in the core nuclei 194, 196Hg. Furthermore, positive-parity bands based on 152+ states were established up to the 352(+) and 292(+) states in 195, 197Tl respectively. Probably these bands originate from the coupling of a h92 proton to a broken neutron pair. This pair consists of a rotation-aligned i132 neutron and a low-j neutron in the P12, P32 or f52 shell. It is known to constitute the 5? bands in 194, 196Hg.  相似文献   

5.
Excited states in the neutron-deficient nucleus 168W, populated in the 148Sm(24Mg, 4n)168W reaction, have been studied using γ-ray spectroscopy. The yrast band, which is identified up to about spin 28, shows a very strong backbend at low frequency, h?ωc = 0.235 MeV, attributed to the (i132)2 neutron alignment. Evidence for a second backbend is also observed. A strongly populated odd-spin (probably negative-parity) sideband is also identified to the spin, and shows several band-crossing anomalies. The characterisation of the anomalies is made by comparison with CSM calculations. Proton and neutron alignments are probably present in the sideband, and the second backbend in the yrast sequence may be due to alignment of i132 protons.  相似文献   

6.
A theoretical interpretation of the reduction in E2 strengths in 126Ba prior to backbending is presented. A shell model basis is built from normal parity orbilals organized into multiplets of a pseudo SU(3) symmetry coupled to h112 configurations restricted to states of seniority zero and two. Within the framework of the model the scattering of a pair of protons from normal parity to the h112 orbital produces band crossing and a corresponding reduction in E2 transition strengths prior to pair alignment which is the principal mechanism of the backbending.  相似文献   

7.
The results of high-resolution studies of the 91Zr(d, p) reaction at Ed = 12 MeV and the 90Zr(t, p) reaction at Et = 11.85 MeV are presented. Absolute cross sections have been measured for both reactions and (d, p) spectroscopic factors determined. A comparison of these results with earlier data has been made, and although many of the previous assignments have been confirmed, many new features concerning the structure of 92Zr have been discovered. Shell-model calculations have been performed for 91Zr and 92Zr using a neutron space which includes the 2d52, 3s12, 2d32, 1g72 and 1h112 orbits and a proton space comprising the 1g92 and 2p12 orbits. Realistic proton-neutron and neutron-neutron interactions based on the Sussex matrix elements were used in the calculations. Spectroscopic factors have been calculated for the 90Zr(d, p) and 91Zr(d, p) reactions and cross sections calculated for the 90Zr(t, p) reaction. In general, good agreement between the theoretical and the experimental results has been obtained.  相似文献   

8.
The 146, 148Nd(α, χn) and 148, 150Nd(3He, χn) reactions at Eα = 20–43 MeV and E3He = 19–27 MeV, are used to study excited states in the 149Sm86 and 149Sm87 nucleides and consequently the low-spin odd-parity excitation. The mixing ratios and multipolarities of the most prominent transitions are deduced from the combined evidence of angular distribution and electron conversion data. The spin-parity assignments for most of the levels observed are established. In 148Sm the ground state band extending to Iπ = 10+ is predominantly populated. A negative-parity odd-spin band extending from Iπ = 3?through 11? is also observed. The bands in 148Sm are interpreted within the framework of the interacting boson approximation model. In 149Sm positive-parity levels with spin up to 252 and negative-parity levels with spins up to 212 are observed. The predominant γ-decay proceeds via transitions associated with i132, h92, f72 and h112 intrinsic configurations. The branching ratios B(E1)/B(E2) are calculated and compared in both 148Sm and 149Sm nucleides. The B(E1)/B(E2) dependence on the value of Z for some N = 86 (as well as 88 and 84) isotones showing a minimum of Z = 64 was noted. A 4 ns high-spin isomer mainly decaying into the positive-parity band based on the i132 state in 149Sm is found. Experimental evidence is presented to interprete the 12+, 152+, … and 92?, 132?, …, ΔI = 2, sequences in 149Sm as arising from the coupling of an h92 neutron to the octupole and quadrupole modes of the 148Sm core nucleus. The absolute reaction cross sections for the 146, 148, 150Nd(3He, χn) reactions have been determined for different bombarding energies. The mixing of the f72 and h92 shells is discussed in the framework of an axial-particle-rotor model calculation.  相似文献   

9.
The 150Nd(7Li, 5n) reaction has been used to study the high-spin states in the odd-odd nucleus 152Eu. Two rotational bands of different behaviour have been identified: a rather regular band based on the Iπ = 8? isomeric state of configuration [413 52]p[505112]n and a strongly decoupled system belonging to the configuration [h112]p[i132]n.It is shown in this work that the aligned angular momentum carried by each two-quasiparticle configuration in 152Eu is the sum of the alignment of the odd neutron and odd proton, which indicates a negligible influence of the neutron-proton residual interaction. Particular attention has been focused on the strong deviations of the moment of inertia of the core when different quasiparticle configurations are involved.  相似文献   

10.
The 48K, 49K and 50K nuclides have been produced in high energy fragmentation and analyzed by mass spectroscopy techniques. Their half-lives have been measured as 6 ± 1 s, 1.1 ± 0.3 s and and 0.7 ± 0.3 s, respectively. The γ-rays from their radioactive decay have been observed and the corresponding γ-intensities measured. The nuclide 50K is shown to be a delayed neutron emitter. The antianalog states in the daughter Ca nuclei with a (1d32)? neutron configuration, preferentially populated in the β-decay, have been located. The corresponding 1d32 neutron single-particle energy is found to remain approximately constant for these neutron-rich Ca isotopes.  相似文献   

11.
The γ-ray spectra from the reactions 89Y(n, γ)90Y and 140Ce(n, γ)141Ce have been measured in the neutron energy range of 6.2–15.6 MeV. The pulse-height spectra were recorded with NaI(Tl) spectrometers and time-of-flight techniques were used to improve signal-to-background ratio. Capture cross sections were determined for γ-ray transitions to the two 2d52 levels at 0 and 203 keV of 90Y and to the 2f72 ground state of 141Ce as well as integrated cross sections to bound states in these nuclei. The observed γ-ray spectra and partial radiative capture cross sections were compared with predictions of the direct-semidirect capture theory. The resonance behaviour with neutron energy of both the ground-state and integrated partial capture cross sections shows the validity of the semidirect model for 89Y and 140Ce in the region of neutron energy encompassing the giant-dipole resonance. The observed symmetry of the cross sections about the peak of the resonance argues strongly for the complex form of the particle-vibration coupling interaction. A detailed comparison of the predictions of the DSD model using the complex coupling interaction shows that the capture cross sections are relatively insensitive to the real part of the interaction.  相似文献   

12.
Angular distributions for elastic scattering and for single nucléon stripping reactions induced by a 31 MeV 11B beam on 26Mg have been measured. The DWBA calculations provide a good account of the shape and magnitude of the proton transfer data and of the neutron transition to the j-favoured d32 level in 27Mg, but fail to reproduce the features of the s12 and d52 transitions to 27Mg. The j-dependent effects and l-matching conditions are investigated as a function of beam energy and their role in determining the reaction mechanism is examined.  相似文献   

13.
High-spin states in 129Ba have been studied by the 120Sn(12C, 3n)129Ba reaction. The onset of a system of bands parallel to the yrast band is observed. The negative parity states (h112system) break up into two substructures based upon the lowest I = j = 112and the I = j ? 1 = 92 states. In addition to the h112 system, a new positive parity structure is seen which is built on the g72shell. The results are in qualitative agreement with the triaxial core model.  相似文献   

14.
The quadrupole coupling constant (eQVzzh) of the 8? 606 keV level of 112In has been measured by the DPAD method in the hexagonal lattice of metallic cadmium. The quadrupole moment of the level is deduced to be |Q| = 0.093(6) in agreement with the theoretical value for the configuration [π(g92)?1 ν(h112)112n]8?.  相似文献   

15.
The nucleus 11B has been studied over the excitation energy range from 8.5 MeV to 21.5 MeV with the 9Be(3He, p)11B / reaction at / E3He = 38 MeV. The analogs of the parent states in 11Be have been located at 12.56, 12.92, 14.40, 16.44, 17.69, 18.0, 19.15 and 21.27 MeV. A complementary measurement with the 9Be(α, d)11B reaction at Eα = 48 MeV demonstrates that the 16.44, 17.69, 18.0 and 19.15 MeV resonances have rather pure isospin Tf = 32. The 14.40 MeV state is a strongly isospin-mixed analog of the 52+1.78 MeV state in 11Be. It is argued that spin S = 1 transfer is involved in the excitation of the 16.44 MeV state and its 3.887 MeV parent in 11Be in a two-step stripping process. The Tf = 12 states and the lowest three Tf = 32 states are compared with the predictions of DWBA utilizing shell-model form factors. It is concluded that the Tf = 12 strength is more strongly fragmented than is implied by the calculations of Teeters and Kurath.  相似文献   

16.
17.
A level scheme of 144Gd has been established using the 144Sm(α, 4nγ) reaction and in-beam spectroscopy methods. Excitation functions, γ-ray angular distributions, γ-γ coincidence spectra, γ-spectra time related to the cyclotron beam bursts and conversion coefficients for the delayed transitions have been measured.The level scheme comprises 11 levels with spins up to I = 12. Two isomers, a 13 ± 2 ns, 7? state at 2471.4 keV and a 145 ± 30 ns, 10+ state at 3433.0 keV have been observed. The former has similar excitation energy as the 7? isomers in 142Sm, 140Nd and 138Ce and it may arise from the d32?1 × νh112?1} configuration although its lifetime seems to indicate some degree of collectivity. The 10+ state has a similar excitation energy as the 10+ isomer found in 138Ce and it may arise from the dominant νh112?2 configuration. Below the 10+ isomer in 144Gd only two excited states have positive parity; the hitherto known first 2+ and 4+ states. The 11+ and 12+ states must include four-particle configurations or they have to be of collective nature. The latter possibility is supported by the considerable E2/M1 mixture (≈ 20 %) observed for the 11+ to 10+ transition. An analysis of the systematics of ground band levels in the N = 80 isotones shows the same gradual behavior between the two VMI solutions previously found for the Te isotopes.  相似文献   

18.
β-delayed emission of α-particles from 9Li and of both α and 6He particles from 11Li is observed. Singles energy spectra and two-dimensional energy spectra of coincident particles are measured. A time-of-flight versus energy measurement is used to identify the mass of the particle. New β-branches are observed which populate high-energy levels in the daughter nuclei. The branching ratios are measured and the β-delayed neutron emission probabilities Pnfor9Li and P3nfor11Li are deduced.  相似文献   

19.
A high-accuracy investigation of absolute γ-ray yields and angular distributions after Coulomb excitation of 203Tl, 205Tl and 209Bi allowed the determination of B(E2) and B(M1) values in these nuclei. Some of the data obtained are compared with direct lifetime measurements and internal conversion data. The influence of deorientation effects on our results is discussed. A comparison is made between the experimental transition matrix elements and shell-model and core-coupling-model calculations. The “l-forbidden” M1 transitions, which are caused by core-polarization effects, have strengths of ≈ 10?3 W.u. In 209Bi the strength of the f72h92. E2 transition is equivalent to a surprisingly large proton polarization charge of (2.8 ± 0.2)e.  相似文献   

20.
Energy levels in 42Ca up to 7.8 MeV have been studied in the neutron capture reaction 41Ca(d, p)42Ca with 12 MeV bombarding energy. Ninety-four excited states have been identified and angular distributions have been measured in the interval from 5° to 110° by means of a broad-range magnetic spectrograph. The angular distributions together with DW calculations have been used to determine In values and spectroscopic factors. The f72 strength sum agrees with shell-model expectations if the f72 spectroscopic factors are renormalized by 10.75, in line with other f72. transfer experiments on 40Ca and 41Ca. A similar renormalization of the ln = 1 spectroscopic factors brings this strength sum in accordance with the shell-model calculations. The effective (f722) matrix elements for 42Ca are compared with the corresponding matrix elements of 42Sc and 48Sc. The differences between the three sets of matrix elements are of the order of a few hundred keV or less. The monopole centroid energy of the (f72)2 multiplet is shifted downwards in the mass-42 nuclei compared to 48Sc, possibly indicating the importance of the monopole pairing force near 40Ca.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号