首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Employing a binucleating phenol-containing ligand PD'OH, a mu-phenoxo-mu-hydroperoxo dicopper(II) complex [Cu(II)2(PD'O-)(-OOH)(RCN)2](ClO4)2 (1, R = CH3, CH3CH2 or C6H5CH2; lambda(max) = 407 nm; nu(O-O) = 870 cm(-1); J. Am. Chem. Soc. 2005, 127, 15360) is generated by reacting a precursor dicopper(I) complex [Cu(I)2(PD'OH)(CH3CN)2](ClO4)2 (2) with O2 in nitrile solvents at -80 degrees C. Species 1 is unable to oxidize externally added substrates, for instance, PPh3, 2,4-tert-butylphenol, or 9,10-dihydroanthracene. However, upon thermal decay, it hydroxylates copper-bound organocyanides (e.g., benzylcyanide), leading to the corresponding aldehyde while releasing cyanide. This chemistry mimics that known for the copper enzyme dopamine-beta-monooxygenase. The thermal decay of 1 also leads to a product [Cu(II)3(L")2(Cl-)2](PF6)2 (6); its X-ray structure reveals that L" is a Schiff base-containing ligand which apparently derives from both oxidative N-dealkylation and then oxidative dehydrogenation of PD'OH; the chloride presumably derives from the CH2Cl2 solvent. With an excess of PPh3 added to 1, a binuclear Cu(I) complex [Cu(I)2(L')(PPh3)2](ClO4)2 (5) with a cross-linked PD'OH ligand L' has also been identified and crystallographically and chemically characterized. The newly formed C-O bond and an apparent k(H)/k(D) = 2.9 +/- 0.2 isotope effect in the benzylcyanide oxidation reaction suggest a common ligand-based radical forms during compound 1 thermal decay reactions. A di-mu-hydroxide-bridged tetranuclear copper(II) cluster compound [{Cu(II)2(PD'O-)(OH-)}2](ClO4)4 (8) has also been isolated following warming of 1. Its formation is consistent with the generation of [Cu(II)2(PD'O-)(OH-)]2+, with dimerization a reflection of the large Cu...Cu distance and thus the preference for not having a second bridging ligand atom (in addition to the phenolate O) for dicopper(II) ligation within the PD'O- ligand framework.  相似文献   

2.
Addition of two equivalents of diphenylthiomethylphosphine (PPh2-CH2SPh) to the starting materials [Au(tht)2]A (tht = tetrahydrothiophene), AgCF3SO3, or [Cu(CH3CN)4]CF3SO3 produces the mononuclear derivatives [M(PPh2CH2SPh)2]A (M = Au, A = CF3SO3 (1a); M = Au, A = ClO4 (1b); M = Ag, A = CF3SO3 (4); M = Cu, A = CF3SO3 (5)) which are able to form the heterodinuclear complexes [AuM'(PPh2CH2SPh)2](CF3SO3)2 (M' = Ag (2), Cu (3)) with a P-Au-P environment. If the starting gold complex is [Au(C6F5)(tht)], reaction with the phosphine produces [Au(C6F5)-(PPh2CH2SPh)] (6) from which, by reaction with AgCF3SO3 or [Cu(CH3CN)4]CF3SO3, the "snake"-type linear complexes [Au2M(C6F5)2-(PPh2CH2SPh)2]CF3SO3 (M = Ag (7), Cu (8)) are obtained. If the silver starting complex is AgCF3CO2, reaction in a 1:1 ratio gives the tetranuclear complex [Au2Ag2(C6F5)2(PPh2CH2SPh)2-(CF3CO2)2] (9). When the molar ratio is 1:2 the trinuclear complex [AuAg2(C6F5) (CF3CO2)2(PPh2CH2SPh)] (10) is obtained. According to ab initio calculations, the presence of only one gold atom is enough to induce metallophilic attractions in the group congeners, and this effect can be modulated depending on the gold ligand.  相似文献   

3.
The tris(triphenylphosphine)copper(I) complexes [(PPh3)3CuX] for X = Cl (1), Br (2), I (3), ClO4 (4), BF4 (5), [(PPh3)3CuCl].CH3CN (1a), [Cu(PPh3)3(CH3CN)]X for X = ClO4 (6), BF4 (7), and [Cu(PPh3)3(CH3CN)]X.CH3CN for X = SiF5 (8), PF6 (9) have been studied by solid state 31P CP/MAS NMR spectroscopy together with single crystal X-ray diffraction for compounds (6)-(9), the latter completing the availability of crystal structure data for the series. Compounds (1)-(5) form an isomorphous series in space group P3 (a approximately 19, c approximately 11 A) with three independent molecules in the unit cell, all disposed about 3-fold symmetry axes. Average values (with estimated standard deviations) for the P-Cu-P, P-Cu-X bond angles and Cu-P bond lengths in compounds (1)-(3) are 110.1(6) degrees, 108.8(6) degrees and 2.354(8)A and 115.2(6) degrees, 102.8(9) degrees and 2.306(9)A for compounds (4) and (5). For the acetonitrile solvated compound (1a), the corresponding parameters are 115(4) degrees, 103(3) degrees and 2.309(3)A. The solid state 31P CP/MAS NMR quadrupole distortion parameters, dnu Cu, for (1)-(3) and (1a) are all less than 1 x 10(9) Hz2, despite the changes in donor properties of the halide in (1)-(3), and the coordination geometry of the P3CuX core in (1a). Change of anion to ClO4- and BF4- in compounds (4) and (5) results in a significant increase of dnu Cu to 4.4-5.2 10(9) Hz2 and 5.2-6.0 x 10(9) Hz2, respectively. Compounds (6) and (7) crystallise as isomorphous [Cu(PPh3)3(CH3CN)]X salts in space group Pbca, (a approximately 17.6, b approximately 22.3, c approximately 24.2 A), while compounds (8) and (9) crystallize as isomorphous acetonitrile solvated salts [Cu(PPh3)3(CH3CN)]X.CH3CN in space group P1(a approximately 10.5, b approximately 13.0, c approximately 19.5 A, alpha approximately 104, beta approximately 104, gamma approximately 94 degrees). The P3CuN angular geometries in all four compounds are distorted from tetrahedral symmetry with average P-Cu-P, P-Cu-N angles and Cu-P bond lengths of 115(4) degrees, 103(4) degrees and 2.32(1)A, with dnu Cu ranging between 1.3 and 2.5 x 10(9) Hz2. The solid state 29Si CP/MAS NMR spectrum of the pentafluorosilicate anion in compound (8) is also reported, affording 1J(29Si, 19F) = 146 Hz.  相似文献   

4.
Pd(II) and Pt(II) complexes with the anions of the model nucleobases 1-methylthymine (1-MethyH), 1-methyluracil (1-MeuraH), and 1-methylcytosine (1-MecytH) of the types [Pd(dmba)(mu-L)]2 [dmba = N,C-chelating 2-((dimethylamino)methyl)phenyl; L = 1-Methy, 1-Meura or 1-Mecyt] and [M(dmba)(L)(L')] [L = 1-Methy or 1-Meura; L' = PPh(3) (M = Pd or Pt), DMSO (M = Pt)] have been obtained. Palladium complexes of the types [Pd(C6F5)(N-N)(L)] [L = 1-Methy or 1-Meura; N-N = N,N,N',N'-tetramethylethylenediamine (tmeda), 2,2'-bipyridine (bpy), or 4,4'-dimethyl-2,2'-bipyridine (Me2bpy)] and [NBu4][Pd(C6F5)(1-Methy)2(H2O)] have also been prepared. The crystal structures of [Pd(dmba)(mu-1-Methy)]2, [Pd(dmba)(mu-1-Mecyt)]2.2CHCl3, [Pd(dmba)(1-Methy)(PPh3)].3CHCl3, [Pt(dmba)(1-Methy)(PPh3)], [Pd(tmeda)(C6F5)(1-Methy)], and [NBu4][Pd(C6F5)(1-Methy)2(H2O)].H2O have been established by X-ray diffraction. The DNA adduct formation of the new platinum complexes synthesized was followed by circular dichroism and electrophoretic mobility. Atomic force microscopy images of the modifications caused by the platinum complexes on plasmid DNA pBR322 were also obtained. Values of IC50 were also calculated for the new platinum complexes against the tumor cell line HL-60. All the new platinum complexes were more active than cisplatin (up to 20-fold in some cases).  相似文献   

5.
The reactions of the dinuclear copper complexes [Cu(2)(L)(OAc)] [H(3)L = N,N'-(2-hydroxypropane-1,3-diyl)bis(salicylaldimine) or [Cu(2)(L')(OAc)] (H(3)L' = N,N'-(2-hydroxypropane-1,3-diyl)bis(4,5-dimethylsalicylaldimine)] with various phosphonic acids, RPO(3)H(2) (R = t-Bu, Ph, c-C(5)H(9), c-C(6)H(11) or 2,4,6-i-Pr(3)-C(6)H(2)), leads to the replacement of the acetate bridge affording tetranuclear copper(II) phosphonates, [Cu(4)(L)(2)(t-BuPO(3))](CH(3)OH)(2)(C(6)H(6)) (1), [Cu(4)(L)(2)(PhPO(3))(H(2)O)(2)(NMe(2)CHO)](H(2)O)(2) (2), [Cu(4)(L')(2)(C(5)H(9)PO(3))](CH(3)OH)(2) (3), [Cu(4)(L')(2)(C(6)H(11)PO(3)](MeOH)(4)(H(2)O)(2) (4) and [Cu(4)(L')(2)(C(30)H(46)P(2)O(5))](PhCH(3)) (5). The molecular structures of 1-4 reveal that a [RPO(3)](2-) ligand is involved in holding the four copper atoms together by a 4.211 coordination mode. In 5, an in situ formed [(RPO(2))(2)O](4-) ligand bridges two pairs of the dinuclear subunits. Magnetic studies on these complexes reveal that the phosphonate ligand is an effective conduit for magnetic interaction among the four copper centers present; a predominantly antiferromagnetic interaction is observed at low temperatures.  相似文献   

6.
Five-coordinated trithiotungsten complexes (PPh(4))[(dmsp)W(S)(3)] (1a) and (PPh(4))[(dpsp)W(S)(3)] (1b) (R(2)PCH(2)CH(2)S(-); R = Me (dmsp-)), Ph (dpsp-))) were synthesized by addition of Hdmsp and Hdpsp to a THF solution of (PPh(4))[(EtS)W(S)(3)]. Treatment of 1a with CuBr in the presence of PPh(3) in CH(3)CN afforded a WCu(2) cluster (dmsp)WS(3)Cu(2)(PPh(3))(2)Br (2). The reaction of 1a with 1 equiv of FeCl(2) went smoothly to generate a 1:1 adduct (PPh(4))[(dmsp)WS(3)(FeCl(2))] (3), while 3 did not react further with excess FeCl(2). On the other hand, 3 was found to react with [Fe(CH(3)CN)(6)](ClO(4))(2), giving rise to an unusual tetranuclear cluster, [(dmsp)WS(3)](2)Fe(2)Cl (4), while the reaction of 1a with 2 equiv of [Fe(CH(3)CN)(6)](ClO(4))(2) led to a cyclic octanuclear cluster [(dmsp)WS(3)Fe](4) (5). Although the oxidation states of W(VI), Cu(I), and Fe(II) are retained in 2 and 3, reduction of the metal ions occurs in the formation of 4 and 5. All the complexes reported in this paper were structurally characterized by X-ray analysis. It is anticipated that the new type of trithiotungsten complexes, 1a and 1b, will serve as potential synthons for various heterometallic sulfide clusters.  相似文献   

7.
A series of primary phosphine homoleptic complexes [ML(4)](n)()(+)X(n)() (1, M = Ni, n = 0; 2, M = Pd, n = 2, X = BF(4); 3, M = Cu, n = 1, X = PF(6); 4, M = Ag, n = 1, X = BF(4); L = PH(2)Mes, Mes = 2,4,6-Me(3)C(6)H(2)] was prepared from mesitylphosphine and Ni(COD)(2), [Pd(NCMe)(4)][BF(4)](2), [Cu(NCMe)(4)]PF(6), and AgBF(4), respectively. Reactions of 1-4 with MeC(CH(2)PPh(2))(3) (triphos) or [P(CH(2)CH(2)PPh(2))(3)] (tetraphos) afforded the derivatives [M(L')L](n)()(+)X(n)() (L' = triphos; 6, M = Ni, n = 0; 7, M = Cu, n = 1, X = PF(6); 8, M = Ag, n = 1, X = BF(4); L' = tetraphos; 9, M = Pd, n = 2, X = BF(4)). Addition of NOBF(4) to 1 yielded the nitrosyl compound [NiL(3)(NO)]BF(4), 5. The solution structure and dynamics of 1-9 were studied by (31)P NMR spectroscopy (including the first reported analyses of a 12-spin system for 1-2). Complexes 1, 3, 6, and 7.solvent were characterized crystallographically. The structural and spectroscopic studies suggest that the coordination properties of L are dominated by its relatively small cone angle and that the basicity of L is comparable to that of more commonly used tertiary phosphines.  相似文献   

8.
Tris(pyrazolyl)borate aryldiazenido complexes [RuTpLL'(ArN(2))](BF(4))(2) (1-3) [Ar = C(6)H(5), 4-CH(3)C(6)H(4); Tp = hydridotris(pyrazolyl)borate; L = P(OEt)(3) or PPh(OEt)(2), L' = PPh(3); L = L' = P(OEt)(3)] were prepared by allowing dihydrogen [RuTp(eta(2)-H(2))LL'](+) derivatives to react with aryldiazonium cations. Spectroscopic characterization (IR, (15)N NMR) using the (15)N-labeled derivatives strongly supports the presence of a linear [Ru]-NN-Ar aryldiazenido group. Hydrazine complexes [RuTp(RNHNH(2))LL']BPh(4) (4-6) [R = H, CH(3), C(6)H(5), 4-NO(2)C(6)H(4); L = P(OEt)(3) or PPh(OEt)(2), L' = PPh(3); L = L' = P(OEt)(3)] were also prepared by reacting the [RuTp(eta(2)-H(2))LL'](+) cation with an excess of hydrazine. The complexes were characterized spectroscopically (IR and NMR) and by X-ray crystal structure determination of the [RuTp(CH(3)NHNH(2))[P(OEt)(3)](PPh(3))]BPh(4) (4d) derivative. Tris(pyrazolyl)borate aryldiazene complexes [RuTp(ArN=NH)LL']BPh(4) (7-9) (Ar = C(6)H(5), 4-CH(3)C(6)H(4)) were prepared following three different methods: (i). by allowing hydride species RuHTpLL' to react with aryldiazonium cations in CH(2)Cl(2); (ii). by treating aryldiazenido [RuTpLL'(ArN(2))](BF(4))(2) with LiBHEt(3) in CH(2)Cl(2); (iii). by oxidizing arylhydrazine [RuTp(ArNHNH(2))LL']BPh(4) complexes with Pb(OAc)(4) in CH(2)Cl(2) at -30 degrees C. Methyldiazene complexes [RuTp(CH(3)N=NH)LL']BPh(4) were also prepared by the oxidation of the corresponding methylhydrazine [RuTp(CH(3)NHNH(2))LL']BPh(4) with Pb(OAc)(4).  相似文献   

9.
The weak-link approach has been employed to synthesize a series of bimetallic Cu(I) macrocycles in high yield. Addition of phosphinoalkylether or -thioether ligands to [Cu(MeCN)4]PF6 produces "condensed" intermediates, [mu-(1,4-(PPh2CH2CH2X)2Y)2Cu2][PF6]2 (X = S, O; Y = C6H4, C6F4), containing strong P-Cu bonds and weaker O-Cu or S-Cu bonds. The weak bonds of these intermediates can be cleaved through ligand substitution reactions to generate macrocyclic structures, [mu-(1,4-(PPh2CH2CH2X)2Y)2(Z)nCu2][PF6]2 (X = S, O; Y = C6H4, C6F4; Z = pyridine, acetonitrile, diimines, isocyanide) in nearly quantitative yields. The incorporation of tetrahedral Cu(I) metal centers into these macrocycles provides a pathway to complexes that differ from analogous d8 square planar macrocycles generated via this approach in their increased air stability, small molecule reactivity, and ability to form multiple structural isomers. Solid-state structures, as determined by single-crystal X-ray diffraction studies, are presented for condensed intermediates and an open macrocycle  相似文献   

10.
The hydroxo complex cis-[L2Pt(mu-OH)]2(NO3)2, (L = PMePh2, 1a), in CH3CN solution, deprotonates the NH2 group of 9-methyladenine (9-MeAd) to give the cyclic trinuclear species cis-[L2Pt[9-MeAd(-H)]]3(NO3)3, (L = PMePh2, 2a), in which the nucleobase binds the metal centers through the N(1), N(6) atoms. In solution at room temperature, 2a slowly reacts with the solvent to form quantitatively the mononuclear azametallacycle cis-[L2PtNH=C(Me)[9-MeAd(-2H)]]NO3 (L = PMePh2, 3a), containing as anionic ligand the deprotonated form of molecule N-(9-methyl-1,9-dihydro-purin-6-ylidene)-acetamidine. In the same experimental conditions, the hydroxo complex with PPh3 (1b) forms immediately the insertion product 3b. Single-crystal X-ray analyses of 3a and 3b show the coordination of the platinum cation at the N(1) site of the purine moiety and to the N atom of the inserted acetonitrile, whereas the exocyclic amino nitrogen binds the carbon atom of the same CN group. The resulting six-membered ring is slightly distorted from planarity, with carbon-nitrogen bond distances for the inserted nitrile typical of a double bond [C(3)-N(2) = 1.292(7) Angstroms in 3a and 1.279(11) Angstroms in 3b], while the remaining CN bonds of the metallocycle are in the range of 1.335(8)-1.397(10) Angstroms. A detailed multinuclear 1H, 31P, 13C, and 15N NMR study shows that the nitrogen atom of the inserted acetonitrile molecule binds a proton suggesting for 3a,b an imino structure in solution. In DMSO and chlorinated solvents, 3a slowly releases the nitrile reforming the trinuclear species 2a, whereas 3b forms the mononuclear derivative cis-[L2Pt[9-MeAd(-H)]]NO3 (L = PPh3, 4b), in which the adeninate ion chelates the metal center through the N(6) and N(7) atoms. Complex 4b is quantitatively obtained when 1b reacts with 9-MeAd in DMSO and can be easily isolated if the reaction is carried out in CH(2)Cl(2). In CH(3)CN solution, at room temperature, 4b slowly converts into 3b indicating that the insertion of acetonitrile is a reversible process. A similar metal-mediated coupling reaction occurs when 1a,b react with 1-methylcytosine (1-MeCy) in CH(3)CN. The resulting complexes, cis-[L(2)PtNH=C(Me)[1-MeCy(-2H)]]NO3, (L = PMePh2, 5a and PPh3, 5b), contain the deprotonated form of the ligand N-(1-methyl-2-oxo-2,3-dihydro-1H-pyrimidin-4-ylidene)-acetamidine. The X-ray analysis of 5a shows the coordination of the metal at the N(3) site of the pyrimidine cycle and to the nitrogen atom of the acetonitrile, with features of the six-membered metallocycle only slightly different from those found in 3a and 3b. In CD3CN/CH3(13)CN solution complexes 5a,b undergo exchange of the inserted nitrile, while in DMSO or chlorinated solvents they irreversibly release CH3CN to form species not yet fully characterized. No insertion of CH3CN occurs when the hydroxo complexes are stabilized by PMe3 and PMe2Ph.  相似文献   

11.
Liaw BJ  Lobana TS  Lin YW  Wang JC  Liu CW 《Inorganic chemistry》2005,44(26):9921-9929
Reactions of [Cu(CH(3)CN)(4)]X (X = PF(6), BF(4)) with bis(diphenylphosphino)methane (dppm = Ph(2)PCH(2)PPh(2)) and ammonium dialkyldithiophosphates, (NH(4))[S(2)P(OR)(2)] (R = Et, (i)Pr), yield a series of novel Cu(I) polynuclear complexes, trinuclear [Cu(3)(mu-dppm)(3)(mu(3)-Cl){S(2)P(OEt)(2)}] (PF(6)) 1 and [Cu(3)(mu-dppm)(2){S(2)P(OR)(2)}(2)](PF(6)) (R = Et, 2; (i)Pr, 3), tetranuclear [Cu(4)(mu-dppm)(2) {S(2)P(OEt)(2)}(4)] 4, and hexanuclear [Cu(6)(mu-dppm)(2)(mu(4)-Cl){S(2)P(O(i)()Pr)(2)}(4)](BF(4)) 5. Similarly, the reaction of [Cu(2)(mu-L-L)(2)(CH(3)CN)(2)](PF(6))(2) (L-L, dppm, dppe = Ph(2)PCH(2)CH(2)PPh(2)) with (NH(4))[S(2)P(OR)(2)] yields dinuclear [Cu(2)(mu-dppm)(2){S(2)P(OR)(2)}(2)] 6 (R= (i)Pr, 6A; Et, 6B), trinuclear [Cu(3)(mu-dppe)(3)(mu-Cl)(2){S(2)P(O(i)Pr)(2)}] 9, and polymeric [Cu(mu(2)-dppe){S(2)P(OR)(2)}](n) (R = Et, 7; (i)Pr, 8) complexes. The formation of 1 and 5 involved the abstraction of chloride from dichloromethane when the Cu/S(2)P(OR)(2) ratio exceeded 1, but when ratio was 1:1, no Cl abstraction occurred, as in compound 4. Compound 9, however, was obtained as a 12% byproduct in the synthesis of 8 using a 1:1:1 ratio of Cu/dppe/S(2)P(O(i)Pr)(2). The chloride binds to Cu atoms in a mu(3)-Cl mode by capping one face of the Cu(3) triangle of cluster 1. A mu(4)-Cl caps a single tetragonal face of the trigonal prism of cluster 5, and in the cluster 9, two chlorides bond in mu(2)-Cl modes. Both clusters 2 and 3 exhibit the mu(3)-S mode of bonding for dtp ligands. Only cluster 5 exhibited close Cu...Cu contacts (2.997-3.0238 A). All of compounds were characterized by single-crystal X-ray diffraction and pertinent crystallographic data for 1, 5, and 9 are are follows: (1) C(79)H(76)ClCu(3)F(6)O(2)P(8)S(2), triclinic, P, a = 11.213(1) A, b = 14.142(1) A, c = 25.910(2) A, alpha = 95.328(2) degrees , beta = 99.594(2) degrees , gamma = 102.581(2) degrees , V = 3918.2(6) A(3), Z = 2; (5) C(74)H(100)BClCu(6)F(4)O(8)P(8)S(8), monoclinic, P2(1)/n, a = 25.198(4) A, b = 15.990(3) A, c = 25.421(4) A, beta = 106.027(3) degrees , V = 9845(3)A(3), Z = 4; (9) C(84)H(86)Cl(2)Cu(3)O(2)P(7)S(2), monoclinic, C2/c, with a = 24.965(3) A, b = 17.058(2) A, c = 20.253(2) A, beta = 95.351(4) degrees , V = 8587.4(17)A(3), Z = 4.  相似文献   

12.
Palladium and platinum complexes with the model nucleobase 1-methylcytosine (1-Mecyt) of the types [Pd(N-N)(C6F5)(1-Mecyt)]ClO4 [N-N = bis(3,5-dimethylpyrazol-1-yl)methane (bpzm), bis(pyrazol-1-yl)methane (bpzm), N,N,N',N'-tetramethylethylenediamine (tmeda), or 2,2'-bipyridine (bpy)] and [M(dmba)(L')(1-Mecyt)]ClO4 [dmba = N,C-chelating 2-(dimethylaminomethyl)phenyl; L' = PPh(3) (M = Pd or Pt), DMSO (M = Pt)] have been obtained. Palladium and platinum complexes of the types cis-[M(C6F5)2(1-Mecyt)2] (M = Pd or Pt) and cis-[Pd(L')(C6F5)(1-Mecyt)2]ClO4 (L' = PPh(3) or t-BuNC) have also been prepared. The crystal structures of [Pd(bpzm)(C6F5)(1-Mecyt)]ClO4, [Pt(dmba)(DMSO)(1-Mecyt)]ClO4, cis-[Pd(C6F5)2(1-Mecyt)2], and cis-[Pd(t-BuNC)(C6F5)(1-Mecyt)2]ClO4 have been established by X-ray diffraction. There is extensive hydrogen bonding (N-H...O, C-H...F or C-H...O) in all the compounds. There are also intermolecular pi-pi interactions between pyrimidine rings of adjacent chains in [Pd(C6F5)2(1-Mecyt)2]. DNA adduct formation of the new complexes synthesized was followed by circular dichroism and electrophoretic mobility. Atomic force microscopy images of the modifications caused by the complexes on plasmid DNA pBR322 were also obtained. Values of IC(50) were also calculated for the new complexes against the tumor cell line HL-60. At a short incubation time (24 h) almost all new complexes were more active than cisplatin.  相似文献   

13.
The transmetallation of the palladacyclopentadiene complex Pd{C(COOMe)C(COOMe)C(COOMe)C(COOMe)}(bipy) with the dicationic Pd(II) complex [Pd(bipy)(CH(3)CN)(2)][BF(4)](2) afforded a terminally σ-palladated diene complex [Pd(2){μ-η(1):η(1)-C(COOMe)C(COOMe)C(COOMe)C(COOMe)}(bipy)(2)(CH(3)CN)(2)][BF(4)](2). It was revealed by X-ray crystallographic analysis that replacement of the acetonitrile ligands in a terminally σ-palladated diene complex with PPh(3) ligands resulted in the conformation change of the σ-palladated diene moiety from skewed s-cis to planar s-trans. Treatment of a bis-triphenylphosphine dipalladium complex [Pd(2)(PPh(3))(2)(CH(3)CN)(4)][PF(6)](2) with dimethoxyacetylene dicarboxylate (DMAD) (1 equiv.) in acetonitrile resulted in the insertion of DMAD to the Pd-Pd bond to afford [Pd(2){μ-η(1):η(1)-C(COOMe)C(COOMe)}(PPh(3))(2)(CH(3)CN)(4)][PF(6)](2). Addition of the second DMAD gave the ylide-type complex [Pd(2){μ-η(2):η(3)-C(COOMe)C(COOMe)C(COOMe)C(COOMe)(PPh(3))}(PPh(3))(2)(CH(3)CN)(3)][PF(6)](2) of which the structure was determined by X-ray crystallographic analysis.  相似文献   

14.
A series of nickel complexes supported with a tripodal ligand bis(1-methylbenzimidazolyl-2-methyl)amine (L) or bis(1-methylbenzimidazolyl-2-methyl)-10-camphorsulfonamide (L') on a Ni(II) ion were synthesized and fully characterized. The complexes, [LNiCl(micro-Cl)]2.4CH(3)OH (1), [LNi(CH(3)CN)3](ClO4)2.2CH(3)CN (3), and [L2(2)Ni(2)(micro-OAc)3]X (X = Cl- (5) or ClO4- (7)), coordinated with the tridentate L ligand, all possess an octahedral structure at the nickel center; in contrast, the geometry of the complexes, L'NiCl2 (2), [L'Ni(CH(3)CN)3](ClO4)2.2CH(3)CN (4), and L'Ni(OAc)2.0.5Et(2)O (6), employing the L' ligand are either tetrahedral or octahedral. Due to the weak coordinating ability of the sulfonamide group and the steric hindrance of the camphorsulfonyl group of L', the tripodal L' becomes a bidentate ligand in the presence of chloride or acetate groups, which have a stronger electron donating ability than acetonitrile, bound to the nickel center. It is noteworthy that the nuclearity of the nickel complexes can be controlled by the coordination ability of the central nitrogen of the supporting bis-methylbenzimidazolyl ligand.  相似文献   

15.
Takuma M  Ohki Y  Tatsumi K 《Inorganic chemistry》2005,44(17):6034-6043
The [MoCu] carbon monoxide dehydrogenase (CODH) is a Cu-containing molybdo-flavoprotein, the active site of which contains a pterin-dithiolene cofactor bound to a sulfido-bridged dinuclear Mo-Cu complex. In this paper, the synthesis and characterization of dinuclear Mo-Cu complexes relevant to the active site of [MoCu]-CODH are described. Reaction of [MoO2S2]2- with CuCN affords the dinuclear complex [O2MoS2Cu(CN)]2- (1), in which the CN- ligand can be replaced with various aryl thiolates to give rise to a series of dinuclear complexes [O2MoS2Cu(SAr)]2- (Ar = Ph (2), o-Tol (3), and p-Tol (4)). An alternative synthesis of complex 2 is the reaction of [MoO2S2]2- with [Cu(SPh)3]2-. Similarly, [O2MoS2Cu(PPh3)]- (5), [O2MoS2Cu(dppe)]- (dppe = 1,2-bis(diphenylphosphino)ethane) (6), and [O2MoS2Cu(triphos)]- (triphos = 1,1,1-tris[(diphenylphosphino)methyl]ethane) (7) were prepared from the reactions of [MoO2S2]2- with the Cu(I) phosphine complexes. Treatment of 1, 2, 4, or 5 with dithiols (1,2-(SH)2C6H4, 1,2-(SH)2C6H2-3,6-Cl2, and 1,2-(SH)2C2H4), in acetonitrile, leads to the replacement of a molybdenum-bound oxo ligand to yield [(dithiolate)Mo(O)S2CuL]2- (L = CN, SAr; dithiolate = 1,2-S2C6H4, 1,2-S2C6H2-3,6-Cl2, or 1,2-S2C2H4) (8-13) or [(1,2-S2C6H4)Mo(O)S2Cu(PPh3)]- (14) complexes.  相似文献   

16.
Reaction of [Os(VI)(N)(L(1))(Cl)(OH(2))] (1) with CN(-) under various conditions affords (PPh(4))[Os(VI)(N)(L(1))(CN)(Cl)] (2), (PPh(4))(2)[Os(VI)(N)(L(2))(CN)(2)] (3), and a novel hydrogen cyanamido complex, (PPh(4))(2)[Os(III){N(H)CN}(L(3))(CN)(3)] (4). Compound 4 reacts readily with both electrophiles and nucleophiles. Protonation and methylation of 4 produce (PPh(4))[Os(III)(NCNH(2))(L(3))(CN)(3)] (5) and (PPh(4))[Os(III)(NCNMe(2))(L(3))(CN)(3)] (6), respectively. Nucleophilic addition of NH(3), ethylamine, and diethylamine readily occur at the C atom of the hydrogen cyanamide ligand of 4 to produce osmium guanidine complexes with the general formula [Os(III){N(H)C(NH(2))NR(1)R(2)}(L(3))(CN)(3)](-) , which have been isolated as PPh(4) salts (R(1) = R(2) = H (7); R(1) = H, R(2) = CH(2)CH(3) (8); R(1) = R(2) = CH(2)CH(3) (9)). The molecular structures of 1-5 and 7 and 8 have been determined by X-ray crystallography.  相似文献   

17.
A full account of a chemical system possessing features that mimic the reactivity aspects of tyrosinase is presented. Using dinucleating ligands with a m-xylyl spacer three new dicopper(I) complexes have been synthesized and their reactivity with dioxygen investigated. The six-membered chelate ring forming ligands provide only two nitrogen coordinations to each copper. The complexes [Cu(I)(2)L(CH(3)CN)(2)]X(2) (X = ClO(4)(-) (1a), SbF(6)(-) (1b)) and [Cu(I)(2)(L-NO(2))(CH(3)CN)(2)][SbF(6)](2) (1c) [L = alpha,alpha'-bis[N-methyl-N-(2-pyridylethyl)amino]-m-xylene; L-NO(2) = para-nitro derivative of L] have been characterized by IR and (1)H NMR spectroscopy. The reaction of O(2) with 1a-c in CH(2)Cl(2) or THF is instantaneous and causes stoichiometric xylyl hydroxylation reactions producing phenol products. Thus 1a produces phenoxo-/hydroxo-bridged product [Cu(II)(2)(L-O)(OH)][ClO(4)](2) (2a). The existence of putative peroxo-dicopper(II) species could not be detected even at -80 degrees C. A trend is observed for the extent of aromatic ring hydroxylation (298 K): CH(3)CN approximately DMF > CH(3)OH > CH(2)Cl(2). Cyclic voltammetric experiment of 1a in DMF reveals an appreciably low redox potential (E(1/2) = -0.26 V vs SCE) for the Cu(II)(2)/Cu(I)(2) redox process. Variable-temperature (25-300 K) magnetic susceptibility measurements establish that the copper(II) centers in 2a and the dihydroxo-bridged complex [Cu(II)(2)L'(OH)(2)][ClO(4)](2) (2b) [formed due to an impurity (L') present during the synthesis of L following Method A; L' = bis[alpha,alpha'-bis(N-methyl-N-(2-pyridylethyl)amino)-m-xylene]methylamine] are antiferromagnetically coupled, with 2a considerably more coupled than 2b. Reaction of 1a with O(2) in CH(2)Cl(2) (298 K) produces an additional unhydroxylated product of composition [Cu(II)(2)L(OH)(OH(2))][ClO(4)](3).2H(2)O.0.5HCl (3a). In agreement with its proposed hydroxo-/aquo-bridged structure, 3a is weakly antiferromagnetically coupled. In CH(3)CN solution, 3a rearranges to generate a doubly hydroxo-bridged species [Cu(II)(2)L(OH)(2)](2+). Using a solution-generated dicopper(I) complex of a closely similar ligand (L' ') providing five-membered chelate ring, the reactivity toward dioxygen was also investigated. It produces only an irreversibly oxidized product of composition Cu(II)(2)L' '(OH)(ClO(4))(3)(H(2)O)(2) (3b) (L' ' = alpha,alpha'-bis[N-methyl-N-(2-pyridylmethyl)amino]-m-xylene). For 3b the copper(II) centers are almost uncoupled.  相似文献   

18.
A novel neutral triple-stranded hexanuclear copper(I) cluster helicate [Cu(I)(6)L(3)]·2CH(3)CN derived from a thiosemicarbazone ligand could be synthesized and crystallographically characterized. The MALDI mass spectrum of this complex suggests that the tetranuclear copper(I) cluster helicate [Cu(I)(4)L(2)] is also present in solution. These copper(I) cluster helicates are capable, in the presence of O(2), of hydroxylating the arene linker of their supporting ligand strands. The resulting dinuclear complex [Cu(II)(2)L'(OH)] is formed by two copper(II) centers, a new ligand arising from the hydroxylation reaction, and one hydroxide group. The magnetic investigation of this compound shows a strong antiferromagnetic coupling between the two Cu(II) centers. The kinetic studies for the hydroxylation process show values of ΔH(≠)=-70 kJ mol(-1), similar to those mediated by the tyrosinase enzymes.  相似文献   

19.
Gu ZG  Liu W  Yang QF  Zhou XH  Zuo JL  You XZ 《Inorganic chemistry》2007,46(8):3236-3244
Two tricyanometallate precursors, (Bu4N)[(Tp4Bo)Fe(CN)3].H2O.2MeCN (1) and (Bu4N)[(pzTp)Fe(CN)3] (2) [Bu4N+ = tetrabutylammonium cation; Tp4Bo = tris(indazolyl)hydroborate; pzTp = tetrakis(pyrazolyl)borate], with a low-spin FeIII center have been synthesized and characterized. The reactions of 1 or 2 with [Cu(Me3tacn)(H2O)2](ClO4)2 (Me3tacn = N,N',N' '-trimethyl-1,4,7-triazacyclononane) afford two pentanuclear cyano-bridged clusters, [(Tp4Bo)2(Me3tacn)3Cu3Fe2(CN)6](ClO4)4.5H2O (3) and [(pzTp)2(Me3tacn)3Cu3Fe2(CN)6](ClO4)4.4H2O (4), respectively. Assembly reactions between 2 and [Ni(phen)(CH3OH)4](ClO4)2 (phen = 1,10-phenanthroline) or Zn(OAc)2.2H2O afford a molecular box [(pzTp)4(phen)4Ni4Fe4(CH3OH)4(CN)12](ClO4)4.4H2O (5) and a rectangular cluster [(pzTp)2Zn2Fe2(OAc)2(H2O)2(CN)6] (6). Their molecular structures were determined by single-crystal X-ray diffraction. In complexes 1 and 2, the central FeIII ions are coordinated by three cyanide carbon atoms and three nitrogen atoms of Tp4Bo- or pzTp-. Both complexes 3 and 4 show a trigonal-bipyramidal geometry, in which [(L)Fe(CN)3]- units occupy the apical positions and are linked through cyanide to [Cu(Me3tacn)]2+ units situated in the equatorial plane. Complex 5 possesses a cubic arrangement of eight metal irons linked through edge-spanning cyanide bridges, while complex 6 shows Zn2Fe2(CN)4 rectangular structure, in which FeIII and ZnII ions are alternately bridged by the cyanide groups. Intramolecular ferromagnetic couplings are observed for complexes 3-5, and they have S = 5/2, 5/2, and 6 ground states and appreciable magnetic anisotropies with negative D values equal to -0.49, -2.39, and -0.39 cm-1, respectively.  相似文献   

20.
Enantiomers of the orthometalated dirhodium compound cis-Rh2(C6H4PPh2)2(OAc)2(HOAc)2 (R-1 and S-1) were prepared from carboxylate exchange reactions of the resolved diasteroisomers of cis-Rh2(C6H4PPh2)2(protos)2(H2O)2 (protos = N-4-methylphenylsulfonyl-l-proline anion) and acetic acid. These compounds react with excess Me3OBF4 in CH3CN, producing the enantiomers of [cis-Rh2(C6H4PPh2)2(CH3CN)6](BF4)2 (R-2 and S-2) which have six labile and replaceable CH3CN ligands in equatorial and axial positions. Reactions of R-2 and S-2 with tetraethylammonium salts of the linear dicarboxylic acids, terephthalic acid (HO2CC6H4CO2H), oxalic acid (HO2CCO2H), and 4,4'-diphenyl-dicarboxylic acid (HO2CC6H4C6H4CO2H) afford the enantiopure triangular supramolecules [cis-Rh2(C6H4PPh2)2(O2CC6H4CO2)(py)2]3, RRR-3 and SSS-3, Rh6(cis-C6H4PPh2)6(O2CCO2)3(py)5(CH2Cl2), RRR-4 and SSS-4, and Rh6(cis-C6H4PPh2)6(O2CC6H4C6H4CO2)3(py)4(CH2Cl2)2, RRR-5 and SSS-5, respectively. The absolute structures of each of the enantiomers of 1, 3, 4, and 5 were determined by X-ray diffraction analyses. The enantiomers of 3, 4, and 5 were found to be enantiomorphically isostructural, whereas R-1 and S-1 crystallized in different space groups. In 4 and 5, CH2Cl2 molecules coordinate to rhodium atoms in the axial positions. The 1H and 31P[1H] NMR spectra of all compounds are reported. The triangular compounds are redox-active, and their electrochemistry is also discussed. An assay of the catalytic activity/selectivity performance of the triangles for typical metal carbene transformation, using the model intermolecular cyclopropanation of styrene with ethyl diazoacetate in both homogeneous and heterogeneous phases, show that these chiral triangles are very active and have remarkable selectivity when compared with simple Rh2 paddle-wheel catalysts with chiral amidate ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号